95,995 research outputs found

    Distributing Labels on Infinite Trees

    Get PDF
    Sturmian words are infinite binary words with many equivalent definitions: They have a minimal factor complexity among all aperiodic sequences; they are balanced sequences (the labels 0 and 1 are as evenly distributed as possible) and they can be constructed using a mechanical definition. All this properties make them good candidates for being extremal points in scheduling problems over two processors. In this paper, we consider the problem of generalizing Sturmian words to trees. The problem is to evenly distribute labels 0 and 1 over infinite trees. We show that (strongly) balanced trees exist and can also be constructed using a mechanical process as long as the tree is irrational. Such trees also have a minimal factor complexity. Therefore they bring the hope that extremal scheduling properties of Sturmian words can be extended to such trees, as least partially. Such possible extensions are illustrated by one such example.Comment: 30 pages, use pgf/tik

    A Unified approach to concurrent and parallel algorithms on balanced data structures

    Get PDF
    Concurrent and parallel algorithms are different. However, in the case of dictionaries, both kinds of algorithms share many common points. We present a unified approach emphasizing these points. It is based on a careful analysis of the sequential algorithm, extracting from it the more basic facts, encapsulated later on as local rules. We apply the method to the insertion algorithms in AVL trees. All the concurrent and parallel insertion algorithms have two main phases. A percolation phase, moving the keys to be inserted down, and a rebalancing phase. Finally, some other algorithms and balanced structures are discussed.Postprint (published version

    Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees

    Full text link
    We study the distributed detection problem in a balanced binary relay tree, where the leaves of the tree are sensors generating binary messages. The root of the tree is a fusion center that makes the overall decision. Every other node in the tree is a fusion node that fuses two binary messages from its child nodes into a new binary message and sends it to the parent node at the next level. We assume that the fusion nodes at the same level use the same fusion rule. We call a string of fusion rules used at different levels a fusion strategy. We consider the problem of finding a fusion strategy that maximizes the reduction in the total error probability between the sensors and the fusion center. We formulate this problem as a deterministic dynamic program and express the solution in terms of Bellman's equations. We introduce the notion of stringsubmodularity and show that the reduction in the total error probability is a stringsubmodular function. Consequentially, we show that the greedy strategy, which only maximizes the level-wise reduction in the total error probability, is within a factor of the optimal strategy in terms of reduction in the total error probability

    Linial arrangements and local binary search trees

    Full text link
    We study the set of NBC sets (no broken circuit sets) of the Linial arrangement and deduce a constructive bijection to the set of local binary search trees. We then generalize this construction to two families of Linial type arrangements for which the bijections are with some kk-ary labelled trees that we introduce for this purpose.Comment: 13 pages, 1 figure. arXiv admin note: text overlap with arXiv:1403.257
    • …
    corecore