176 research outputs found

    Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks

    Full text link
    Given two or more Deep Neural Networks (DNNs) with the same or similar architectures, and trained on the same dataset, but trained with different solvers, parameters, hyper-parameters, regularization, etc., can we predict which DNN will have the best test accuracy, and can we do so without peeking at the test data? In this paper, we show how to use a new Theory of Heavy-Tailed Self-Regularization (HT-SR) to answer this. HT-SR suggests, among other things, that modern DNNs exhibit what we call Heavy-Tailed Mechanistic Universality (HT-MU), meaning that the correlations in the layer weight matrices can be fit to a power law (PL) with exponents that lie in common Universality classes from Heavy-Tailed Random Matrix Theory (HT-RMT). From this, we develop a Universal capacity control metric that is a weighted average of PL exponents. Rather than considering small toy NNs, we examine over 50 different, large-scale pre-trained DNNs, ranging over 15 different architectures, trained on ImagetNet, each of which has been reported to have different test accuracies. We show that this new capacity metric correlates very well with the reported test accuracies of these DNNs, looking across each architecture (VGG16/.../VGG19, ResNet10/.../ResNet152, etc.). We also show how to approximate the metric by the more familiar Product Norm capacity measure, as the average of the log Frobenius norm of the layer weight matrices. Our approach requires no changes to the underlying DNN or its loss function, it does not require us to train a model (although it could be used to monitor training), and it does not even require access to the ImageNet data.Comment: Updated as will appear in SDM2

    Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning

    Full text link
    Random Matrix Theory (RMT) is applied to analyze weight matrices of Deep Neural Networks (DNNs), including both production quality, pre-trained models such as AlexNet and Inception, and smaller models trained from scratch, such as LeNet5 and a miniature-AlexNet. Empirical and theoretical results clearly indicate that the DNN training process itself implicitly implements a form of Self-Regularization. The empirical spectral density (ESD) of DNN layer matrices displays signatures of traditionally-regularized statistical models, even in the absence of exogenously specifying traditional forms of explicit regularization. Building on relatively recent results in RMT, most notably its extension to Universality classes of Heavy-Tailed matrices, we develop a theory to identify 5+1 Phases of Training, corresponding to increasing amounts of Implicit Self-Regularization. These phases can be observed during the training process as well as in the final learned DNNs. For smaller and/or older DNNs, this Implicit Self-Regularization is like traditional Tikhonov regularization, in that there is a "size scale" separating signal from noise. For state-of-the-art DNNs, however, we identify a novel form of Heavy-Tailed Self-Regularization, similar to the self-organization seen in the statistical physics of disordered systems. This results from correlations arising at all size scales, which arises implicitly due to the training process itself. This implicit Self-Regularization can depend strongly on the many knobs of the training process. By exploiting the generalization gap phenomena, we demonstrate that we can cause a small model to exhibit all 5+1 phases of training simply by changing the batch size. This demonstrates that---all else being equal---DNN optimization with larger batch sizes leads to less-well implicitly-regularized models, and it provides an explanation for the generalization gap phenomena.Comment: 59 pages, 31 figure

    Traditional and Heavy-Tailed Self Regularization in Neural Network Models

    Full text link
    Random Matrix Theory (RMT) is applied to analyze the weight matrices of Deep Neural Networks (DNNs), including both production quality, pre-trained models such as AlexNet and Inception, and smaller models trained from scratch, such as LeNet5 and a miniature-AlexNet. Empirical and theoretical results clearly indicate that the empirical spectral density (ESD) of DNN layer matrices displays signatures of traditionally-regularized statistical models, even in the absence of exogenously specifying traditional forms of regularization, such as Dropout or Weight Norm constraints. Building on recent results in RMT, most notably its extension to Universality classes of Heavy-Tailed matrices, we develop a theory to identify \emph{5+1 Phases of Training}, corresponding to increasing amounts of \emph{Implicit Self-Regularization}. For smaller and/or older DNNs, this Implicit Self-Regularization is like traditional Tikhonov regularization, in that there is a `size scale' separating signal from noise. For state-of-the-art DNNs, however, we identify a novel form of \emph{Heavy-Tailed Self-Regularization}, similar to the self-organization seen in the statistical physics of disordered systems. This implicit Self-Regularization can depend strongly on the many knobs of the training process. By exploiting the generalization gap phenomena, we demonstrate that we can cause a small model to exhibit all 5+1 phases of training simply by changing the batch size.Comment: Very abridged version of arXiv:1810.0107

    Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data

    Full text link
    In many applications, one works with neural network models trained by someone else. For such pretrained models, one may not have access to training data or test data. Moreover, one may not know details about the model, e.g., the specifics of the training data, the loss function, the hyperparameter values, etc. Given one or many pretrained models, it is a challenge to say anything about the expected performance or quality of the models. Here, we address this challenge by providing a detailed meta-analysis of hundreds of publicly-available pretrained models. We examine norm based capacity control metrics as well as power law based metrics from the recently-developed Theory of Heavy-Tailed Self Regularization. We find that norm based metrics correlate well with reported test accuracies for well-trained models, but that they often cannot distinguish well-trained versus poorly-trained models. We also find that power law based metrics can do much better -- quantitatively better at discriminating among series of well-trained models with a given architecture; and qualitatively better at discriminating well-trained versus poorly-trained models. These methods can be used to identify when a pretrained neural network has problems that cannot be detected simply by examining training/test accuracies.Comment: 35 pages, 8 tables, 17 figures. To appear in Nature Communication

    Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior

    Full text link
    We describe an approach to understand the peculiar and counterintuitive generalization properties of deep neural networks. The approach involves going beyond worst-case theoretical capacity control frameworks that have been popular in machine learning in recent years to revisit old ideas in the statistical mechanics of neural networks. Within this approach, we present a prototypical Very Simple Deep Learning (VSDL) model, whose behavior is controlled by two control parameters, one describing an effective amount of data, or load, on the network (that decreases when noise is added to the input), and one with an effective temperature interpretation (that increases when algorithms are early stopped). Using this model, we describe how a very simple application of ideas from the statistical mechanics theory of generalization provides a strong qualitative description of recently-observed empirical results regarding the inability of deep neural networks not to overfit training data, discontinuous learning and sharp transitions in the generalization properties of learning algorithms, etc.Comment: 31 pages; added brief discussion of recent papers that use/extend these idea

    Periodic Spectral Ergodicity: A Complexity Measure for Deep Neural Networks and Neural Architecture Search

    Full text link
    Establishing associations between the structure and the generalisation ability of deep neural networks (DNNs) is a challenging task in modern machine learning. Producing solutions to this challenge will bring progress both in the theoretical understanding of DNNs and in building new architectures efficiently. In this work, we address this challenge by developing a new complexity measure based on the concept of {Periodic Spectral Ergodicity} (PSE) originating from quantum statistical mechanics. Based on this measure a technique is devised to quantify the complexity of deep neural networks from the learned weights and traversing the network connectivity in a sequential manner, hence the term cascading PSE (cPSE), as an empirical complexity measure. This measure will capture both topological and internal neural processing complexity simultaneously. Because of this cascading approach, i.e., a symmetric divergence of PSE on the consecutive layers, it is possible to use this measure for Neural Architecture Search (NAS). We demonstrate the usefulness of this measure in practice on two sets of vision models, ResNet and VGG, and sketch the computation of cPSE for more complex network structures.Comment: 9 pages, 5 figure

    Machine learning identifies scale-free properties in disordered materials

    Full text link
    The vast amount of design freedom in disordered systems expands the parameter space for signal processing, allowing for unique signal flows that are distinguished from those in regular systems. However, this large degree of freedom has hindered the deterministic design of disordered systems for target functionalities. Here, we employ a machine learning (ML) approach for predicting and designing wave-matter interactions in disordered structures, thereby identifying scale-free properties for waves. To abstract and map the features of wave behaviours and disordered structures, we develop disorder-to-localization and localization-to-disorder convolutional neural networks (CNNs). Each CNN enables the instantaneous prediction of wave localization in disordered structures and the instantaneous generation of disordered structures from given localizations. We demonstrate that CNN-generated disordered structures have scale-free properties with heavy tails and hub atoms, which exhibit an increase of multiple orders of magnitude in robustness to accidental defects, such as material or structural imperfection. Our results verify the critical role of ML network structures in determining ML-generated real-space structures, which can be used in the design of defect-immune and efficiently tunable devices.Comment: 44 pages, 15 figure

    Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise

    Full text link
    Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning where the problem is non-convex and the gradient noise might exhibit a heavy-tailed behavior, as empirically observed in recent studies. In this study, we consider a \emph{continuous-time} variant of SGDm, known as the underdamped Langevin dynamics (ULD), and investigate its asymptotic properties under heavy-tailed perturbations. Supported by recent studies from statistical physics, we argue both theoretically and empirically that the heavy-tails of such perturbations can result in a bias even when the step-size is small, in the sense that \emph{the optima of stationary distribution} of the dynamics might not match \emph{the optima of the cost function to be optimized}. As a remedy, we develop a novel framework, which we coin as \emph{fractional} ULD (FULD), and prove that FULD targets the so-called Gibbs distribution, whose optima exactly match the optima of the original cost. We observe that the Euler discretization of FULD has noteworthy algorithmic similarities with \emph{natural gradient} methods and \emph{gradient clipping}, bringing a new perspective on understanding their role in deep learning. We support our theory with experiments conducted on a synthetic model and neural networks.Comment: 20 pages, Published at International Conference on Machine Learning 202

    Multiplicative noise and heavy tails in stochastic optimization

    Full text link
    Although stochastic optimization is central to modern machine learning, the precise mechanisms underlying its success, and in particular, the precise role of the stochasticity, still remain unclear. Modelling stochastic optimization algorithms as discrete random recurrence relations, we show that multiplicative noise, as it commonly arises due to variance in local rates of convergence, results in heavy-tailed stationary behaviour in the parameters. A detailed analysis is conducted for SGD applied to a simple linear regression problem, followed by theoretical results for a much larger class of models (including non-linear and non-convex) and optimizers (including momentum, Adam, and stochastic Newton), demonstrating that our qualitative results hold much more generally. In each case, we describe dependence on key factors, including step size, batch size, and data variability, all of which exhibit similar qualitative behavior to recent empirical results on state-of-the-art neural network models from computer vision and natural language processing. Furthermore, we empirically demonstrate how multiplicative noise and heavy-tailed structure improve capacity for basin hopping and exploration of non-convex loss surfaces, over commonly-considered stochastic dynamics with only additive noise and light-tailed structure.Comment: 30 pages, 7 figure

    Knowledge Capture and Replay for Continual Learning

    Full text link
    Deep neural networks have shown promise in several domains, and the learned task-specific information is implicitly stored in the network parameters. It will be vital to utilize representations from these networks for downstream tasks such as continual learning. In this paper, we introduce the notion of {\em flashcards} that are visual representations to {\em capture} the encoded knowledge of a network, as a function of random image patterns. We demonstrate the effectiveness of flashcards in capturing representations and show that they are efficient replay methods for general and task agnostic continual learning setting. Thus, while adapting to a new task, a limited number of constructed flashcards, help to prevent catastrophic forgetting of the previously learned tasks. Most interestingly, such flashcards neither require external memory storage nor need to be accumulated over multiple tasks and only need to be constructed just before learning the subsequent new task, irrespective of the number of tasks trained before and are hence task agnostic. We first demonstrate the efficacy of flashcards in capturing knowledge representation from a trained network, and empirically validate the efficacy of flashcards on a variety of continual learning tasks: continual unsupervised reconstruction, continual denoising, and new-instance learning classification, using a number of heterogeneous benchmark datasets. These studies also indicate that continual learning algorithms with flashcards as the replay strategy perform better than other state-of-the-art replay methods, and exhibits on par performance with the best possible baseline using coreset sampling, with the least additional computational complexity and storage
    corecore