1,017 research outputs found

    Reconfiguration in an Optical Multiring Interconnection Network - Masters Thesis, December 2002

    Get PDF
    The advent of optical technology that can feasibly support extremely high bandwidth chip-to-chip communication raises a host of architectural questions in the design of digital systems. Terabit per second (and higher) bandwidths have not been previously available at the chip level. In this thesis, we examine the use of this technology in two different scenarios, viz., as the interconnection network in a multiprocessor system and as a switch fabric in network routers. Specifically, we examine the performance gains associated with utilizing the bandwidth reconfiguration capabilities of a system based on this technology

    P4TE: PISA Switch Based Traffic Engineering in Fat-Tree Data Center Networks

    Full text link
    This work presents P4TE, an in-band traffic monitoring, load-aware packet forwarding, and flow rate controlling mechanism for traffic engineering in fat-tree topology-based data center networks using PISA switches. It achieves sub-RTT reaction time to change in network conditions, improved flow completion time, and balanced link utilization. Unlike the classical probe-based monitoring approach, P4TE uses an in-band monitoring approach to identify traffic events in the data plane. Based on these events, it re-adjusts the priorities of the paths. It uses a heuristic-based load-aware forwarding path selection mechanism to respond to changing network conditions and control the flow rate by sending feedback to the end hosts. It is implementable on emerging v1model.p4 architecture-based programmable switches and capable of maintaining the line-rate performance. Our evaluation shows that P4TE uses a small amount of resources in the PISA pipeline and achieves an improved flow completion time than ECMP and HULA

    Event-Driven Network Programming

    Full text link
    Software-defined networking (SDN) programs must simultaneously describe static forwarding behavior and dynamic updates in response to events. Event-driven updates are critical to get right, but difficult to implement correctly due to the high degree of concurrency in networks. Existing SDN platforms offer weak guarantees that can break application invariants, leading to problems such as dropped packets, degraded performance, security violations, etc. This paper introduces EVENT-DRIVEN CONSISTENT UPDATES that are guaranteed to preserve well-defined behaviors when transitioning between configurations in response to events. We propose NETWORK EVENT STRUCTURES (NESs) to model constraints on updates, such as which events can be enabled simultaneously and causal dependencies between events. We define an extension of the NetKAT language with mutable state, give semantics to stateful programs using NESs, and discuss provably-correct strategies for implementing NESs in SDNs. Finally, we evaluate our approach empirically, demonstrating that it gives well-defined consistency guarantees while avoiding expensive synchronization and packet buffering

    Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic

    Full text link
    We investigate the asymptotic behavior of the steady-state queue length distribution under generalized max-weight scheduling in the presence of heavy-tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic, and the other receives light-tailed traffic. We study the class of throughput optimal max-weight-alpha scheduling policies, and derive an exact asymptotic characterization of the steady-state queue length distributions. In particular, we show that the tail of the light queue distribution is heavier than a power-law curve, whose tail coefficient we obtain explicitly. Our asymptotic characterization also contains an intuitively surprising result - the celebrated max-weight scheduling policy leads to the worst possible tail of the light queue distribution, among all non-idling policies. Motivated by the above negative result regarding the max-weight-alpha policy, we analyze a log-max-weight (LMW) scheduling policy. We show that the LMW policy guarantees an exponentially decaying light queue tail, while still being throughput optimal

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies

    Throughput Optimal Scheduling Over Time-Varying Channels in the Presence of Heavy-Tailed Traffic

    Get PDF
    We study the problem of scheduling over time varying links in a network that serves both heavy-tailed and light tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic (the heavy queue), and the other receives light-tailed traffic (the light queue). The queues are connected to the server through time-varying ON/OFF links, which model fading wireless channels. We first show that the policy that gives complete priority to the light-tailed traffic guarantees the best possible tail behavior of both queue backlog distributions, whenever the queues are stable. However, the priority policy is not throughput maximizing, and can cause undesirable instability effects in the heavy queue. Next, we study the class of throughput optimal max-weight-α scheduling policies. We discover a threshold phenomenon, and show that the steady state light queue backlog distribution is heavy-tailed for arrival rates above a threshold value, and light-tailed otherwise. We also obtain the exact tail coefficient of the light queue backlog distribution under max-weight-α scheduling. Finally, we study a log-max-weight scheduling policy, which is throughput optimal, and ensures that the light queue backlog distribution is light-tailed.National Science Foundation (U.S.) (Grant CNS-1217048)National Science Foundation (U.S.) (Grant CNS-0915988)National Science Foundation (U.S.) (CMMI-1234062)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238
    corecore