775 research outputs found

    Investigating the use of semantic technologies in spatial mapping applications

    Get PDF
    Semantic Web Technologies are ideally suited to build context-aware information retrieval applications. However, the geospatial aspect of context awareness presents unique challenges such as the semantic modelling of geographical references for efficient handling of spatial queries, the reconciliation of the heterogeneity at the semantic and geo-representation levels, maintaining the quality of service and scalability of communicating, and the efficient rendering of the spatial queries' results. In this paper, we describe the modelling decisions taken to solve these challenges by analysing our implementation of an intelligent planning and recommendation tool that provides location-aware advice for a specific application domain. This paper contributes to the methodology of integrating heterogeneous geo-referenced data into semantic knowledgebases, and also proposes mechanisms for efficient spatial interrogation of the semantic knowledgebase and optimising the rendering of the dynamically retrieved context-relevant information on a web frontend

    Hillview:A trillion-cell spreadsheet for big data

    Get PDF
    Hillview is a distributed spreadsheet for browsing very large datasets that cannot be handled by a single machine. As a spreadsheet, Hillview provides a high degree of interactivity that permits data analysts to explore information quickly along many dimensions while switching visualizations on a whim. To provide the required responsiveness, Hillview introduces visualization sketches, or vizketches, as a simple idea to produce compact data visualizations. Vizketches combine algorithmic techniques for data summarization with computer graphics principles for efficient rendering. While simple, vizketches are effective at scaling the spreadsheet by parallelizing computation, reducing communication, providing progressive visualizations, and offering precise accuracy guarantees. Using Hillview running on eight servers, we can navigate and visualize datasets of tens of billions of rows and trillions of cells, much beyond the published capabilities of competing systems

    Massively-Parallel Break Detection for Satellite Data

    Full text link
    The field of remote sensing is nowadays faced with huge amounts of data. While this offers a variety of exciting research opportunities, it also yields significant challenges regarding both computation time and space requirements. In practice, the sheer data volumes render existing approaches too slow for processing and analyzing all the available data. This work aims at accelerating BFAST, one of the state-of-the-art methods for break detection given satellite image time series. In particular, we propose a massively-parallel implementation for BFAST that can effectively make use of modern parallel compute devices such as GPUs. Our experimental evaluation shows that the proposed GPU implementation is up to four orders of magnitude faster than the existing publicly available implementation and up to ten times faster than a corresponding multi-threaded CPU execution. The dramatic decrease in running time renders the analysis of significantly larger datasets possible in seconds or minutes instead of hours or days. We demonstrate the practical benefits of our implementations given both artificial and real datasets.Comment: 10 page

    Semantic Pose using Deep Networks Trained on Synthetic RGB-D

    Full text link
    In this work we address the problem of indoor scene understanding from RGB-D images. Specifically, we propose to find instances of common furniture classes, their spatial extent, and their pose with respect to generalized class models. To accomplish this, we use a deep, wide, multi-output convolutional neural network (CNN) that predicts class, pose, and location of possible objects simultaneously. To overcome the lack of large annotated RGB-D training sets (especially those with pose), we use an on-the-fly rendering pipeline that generates realistic cluttered room scenes in parallel to training. We then perform transfer learning on the relatively small amount of publicly available annotated RGB-D data, and find that our model is able to successfully annotate even highly challenging real scenes. Importantly, our trained network is able to understand noisy and sparse observations of highly cluttered scenes with a remarkable degree of accuracy, inferring class and pose from a very limited set of cues. Additionally, our neural network is only moderately deep and computes class, pose and position in tandem, so the overall run-time is significantly faster than existing methods, estimating all output parameters simultaneously in parallel on a GPU in seconds.Comment: ICCV 2015 Submissio

    Egocentric Perception of Hands and Its Applications

    Get PDF
    • …
    corecore