595 research outputs found

    Parabolic equations with dynamical boundary conditions and source terms on interfaces

    Get PDF
    We consider parabolic equations with mixed boundary conditions and domain inhomogeneities supported on a lower dimensional hypersurface, enforcing a jump in the conormal derivative. Only minimal regularity assumptions on the domain and the coefficients are imposed. It is shown that the corresponding linear operator enjoys maximal parabolic regularity in a suitable LpL^p-setting. The linear results suffice to treat also the corresponding nondegenerate quasilinear problems.Comment: 30 pages. Revised version. To appear in Annali di Matematica Pura ed Applicat

    Optimal control solution for Pennes' equation using strongly continuous semigroup

    Get PDF
    summary:A distributed optimal control problem on and inside a homogeneous skin tissue is solved subject to Pennes' equation with Dirichlet boundary condition at one end and Rubin condition at the other end. The point heating power induced by conducting heating probe inserted at the tumour site as an unknown control function at specific depth inside biological body is preassigned. Corresponding pseudo-port Hamiltonian system is proposed. Moreover, it is proved that bioheat transfer equation forms a contraction and dissipative system. Mild solution for bioheat transfer equation and its adjoint problem are proposed. Controllability and exponentially stability for the related system is proved. The optimal control problem is solved using strongly continuous semigroup solution and time discretization. Mathematical simulations for a thermal therapy in the presence of point heating power are presented to investigate efficiency of the proposed technique

    L1L^1 semigroup generation for Fokker-Planck operators associated with general L\'evy driven SDEs

    Full text link
    We prove a new generation result in L1L^1 for a large class of non-local operators with non-degenerate local terms. This class contains the operators appearing in Fokker-Planck or Kolmogorov forward equations associated with L\'evy driven SDEs, i.e. the adjoint operators of the infinitesimal generators of these SDEs. As a byproduct, we also obtain a new elliptic regularity result of independent interest. The main novelty in this paper is that we can consider very general L\'evy operators, including state-space depending coefficients with linear growth and general L\'evy measures which can be singular and have fat tails

    On the quantum description of Einstein's Brownian motion

    Full text link
    A fully quantum treatment of Einstein's Brownian motion is given, showing in particular the role played by the two original requirements of translational invariance and connection between dynamics of the Brownian particle and atomic nature of the medium. The former leads to a clearcut relationship with Holevo's result on translation-covariant quantum-dynamical semigroups, the latter to a formulation of the fluctuation-dissipation theorem in terms of the dynamic structure factor, a two-point correlation function introduced in seminal work by van Hove, directly related to density fluctuations in the medium and therefore to its atomistic, discrete nature. A microphysical expression for the generally temperature dependent friction coefficient is given in terms of the dynamic structure factor and of the interaction potential describing the single collisions. A comparison with the Caldeira Leggett model is drawn, especially in view of the requirement of translational invariance, further characterizing general structures of reduced dynamics arising in the presence of symmetry under translations.Comment: 14 pages, latex, no figure

    Stochastic evolution equations driven by Liouville fractional Brownian motion

    Get PDF
    Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of L(H,E)-valued functions with respect to H-cylindrical Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in the interval (0,1). For Hurst parameters in (0,1/2) we show that a function F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical Liouville fBm if and only if it is stochastically integrable with respect to an H-cylindrical fBm with the same Hurst parameter. As an application we show that second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by space-time noise which is white in space and Liouville fractional in time with Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous both and space.Comment: To appear in Czech. Math.

    Dephasing-induced diffusive transport in anisotropic Heisenberg model

    Full text link
    We study transport properties of anisotropic Heisenberg model in a disordered magnetic field experiencing dephasing due to external degrees of freedom. In the absence of dephasing the model can display, depending on parameter values, the whole range of possible transport regimes: ideal ballistic conduction, diffusive, or ideal insulating behavior. We show that the presence of dephasing induces normal diffusive transport in a wide range of parameters. We also analyze the dependence of spin conductivity on the dephasing strength. In addition, by analyzing the decay of spin-spin correlation function we discover a presence of long-range order for finite chain sizes. All our results for a one-dimensional spin chain at infinite temperature can be equivalently rephrased for strongly-interacting disordered spinless fermions.Comment: 15 pages, 9 PS figure
    corecore