48,326 research outputs found

    Sustainable consumption: towards action and impact. : International scientific conference November 6th-8th 2011, Hamburg - European Green Capital 2011, Germany: abstract volume

    Get PDF
    This volume contains the abstracts of all oral and poster presentations of the international scientific conference „Sustainable Consumption – Towards Action and Impact“ held in Hamburg (Germany) on November 6th-8th 2011. This unique conference aims to promote a comprehensive academic discourse on issues concerning sustainable consumption and brings together scholars from a wide range of academic disciplines. In modern societies, private consumption is a multifaceted and ambivalent phenomenon: it is a ubiquitous social practice and an economic driving force, yet at the same time, its consequences are in conflict with important social and environmental sustainability goals. Finding paths towards “sustainable consumption” has therefore become a major political issue. In order to properly understand the challenge of “sustainable consumption”, identify unsustainable patterns of consumption and bring forward the necessary innovations, a collaborative effort of researchers from different disciplines is needed

    Describing the impact of health research: a Research Impact Framework.

    Get PDF
    BACKGROUND: Researchers are increasingly required to describe the impact of their work, e.g. in grant proposals, project reports, press releases and research assessment exercises. Specialised impact assessment studies can be difficult to replicate and may require resources and skills not available to individual researchers. Researchers are often hard-pressed to identify and describe research impacts and ad hoc accounts do not facilitate comparison across time or projects. METHODS: The Research Impact Framework was developed by identifying potential areas of health research impact from the research impact assessment literature and based on research assessment criteria, for example, as set out by the UK Research Assessment Exercise panels. A prototype of the framework was used to guide an analysis of the impact of selected research projects at the London School of Hygiene and Tropical Medicine. Additional areas of impact were identified in the process and researchers also provided feedback on which descriptive categories they thought were useful and valid vis-à-vis the nature and impact of their work. RESULTS: We identified four broad areas of impact: I. Research-related impacts; II. Policy impacts; III. Service impacts: health and intersectoral and IV. Societal impacts. Within each of these areas, further descriptive categories were identified. For example, the nature of research impact on policy can be described using the following categorisation, put forward by Weiss: Instrumental use where research findings drive policy-making; Mobilisation of support where research provides support for policy proposals; Conceptual use where research influences the concepts and language of policy deliberations and Redefining/wider influence where research leads to rethinking and changing established practices and beliefs. CONCLUSION: Researchers, while initially sceptical, found that the Research Impact Framework provided prompts and descriptive categories that helped them systematically identify a range of specific and verifiable impacts related to their work (compared to ad hoc approaches they had previously used). The framework could also help researchers think through implementation strategies and identify unintended or harmful effects. The standardised structure of the framework facilitates comparison of research impacts across projects and time, which is useful from analytical, management and assessment perspectives

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review

    Quantifying echo chamber effects in information spreading over political communication networks

    Get PDF
    Echo chambers in online social networks, in which users prefer to interact only with ideologically-aligned peers, are believed to facilitate misinformation spreading and contribute to radicalize political discourse. In this paper, we gauge the effects of echo chambers in information spreading phenomena over political communication networks. Mining 12 million Twitter messages, we reconstruct a network in which users interchange opinions related to the impeachment of the former Brazilian President Dilma Rousseff. We define a continuous {political position} parameter, independent of the network's structure, that allows to quantify the presence of echo chambers in the strongly connected component of the network, reflected in two well-separated communities of similar sizes with opposite views of the impeachment process. By means of simple spreading models, we show that the capability of users in propagating the content they produce, measured by the associated spreadability, strongly depends on their attitude. Users expressing pro-impeachment sentiments are capable to transmit information, on average, to a larger audience than users expressing anti-impeachment sentiments. Furthermore, the users' spreadability is correlated to the diversity, in terms of political position, of the audience reached. Our method can be exploited to identify the presence of echo chambers and their effects across different contexts and shed light upon the mechanisms allowing to break echo chambers.Comment: 9 pages, 4 figures. Supplementary Information available as ancillary fil

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform
    corecore