1,236 research outputs found

    Thermal parameter optimisation for accurate finite element based on simulation of machine tools

    Get PDF
    The need for high-speed/high-precision machine tools is swiftly increasing in response to the growth of production technology that necessitates high- recision parts and high productivity. The influence of thermally induced errors in machine tools can have a much greater influence on the dimensional tolerances of the final products produced as compared to geometric and cutting force errors. Therefore, to maintain high accuracy of machine tool, it requires an accurate method of thermal error control or compensation using a detailed model. The thermal errors of machine tools are induced by the propagation of heat through the structure of the machine due to excitation of internal and external heat sources such as belt drives, motors and bearings. There has been significant research effort to model thermal errors of machine tools in recent decades. The utilised techniques have proved their capabilities with excellent thermal prediction and compensation results but they often involve significant effort for effective implementation with constraints for complexity, robustness, and cost. One of the most significant drawbacks of modelling machine behaviour using Finite Element Analysis (FEA) is the difficulty of accurately obtaining the characteristic of heat transfer, such as heat power of machine tool heat sources and the various boundary conditions. The aims of this research to provide reliable techniques to obtain heat transfer coefficients of machine tools in order to improve the accuracy of FEA simulations. FEA is used to simulate the thermal characteristics of spindle system of small Vertical Machining Centre (VMC) using SolidWorks Simulation software. Most FEA models of machine tools employ the general prediction technique based on formulae, provided by OEMs, to identify many of the boundary conditions associated with simulating thermal error in machine tools. The formulae method was used to identify the heat transfer coefficients of a small VMC feed drive system. Employing these values allowed FEA to be used to simulate the thermal characteristics of the feed drive model. In addition, an alternative efficient methodology, based on energy balance calculations and thermal imaging, was used to obtain the heat transfer coefficients of the same feed drive system. Then the parameters obtained were applied to the FEA model of the system and validated against experimental results. The residual thermal error was reduced to just 20 % when the energy balance method was employed and compared with a residual of 30 %, when the formulae method was employed. The existing energy balance method was also used to obtain the heat transfer coefficients of the headslide on a small VMC based on thermal imaging data. Then FEA model of the headslide of VMC was created and simulated. There was significant reduction in the thermal error but significant uncertainties in the method were identified suggesting that further improvements could be made. An additional novel Two Dimensional (2D) optimisation technique based on thermal imaging data was created and used to calibrate the calculated heat transfer coefficients of the headslide of a small sized machine tool. In order to optimise the heat power of various heat sources, a 2D model of surface temperature of the headslide was created in Matlab software and compared against the experimental data both spatially across a plane and over time in order to take into account time varying heat loads. The effectiveness of the technique was proved using FEA models of the machine and comparison with test data from the machine tool. Significant improvement was achieved with correlation of 85 % between simulated thermal characteristics and the experimental dat

    An investigation into the effects of thermal errors of a machine tool on the dimensional accuracy of parts

    Get PDF
    The reduction of machining errors has become increasingly important in modern manufacturing in order to obtain the required quality of parts. Geometric error makes up the basic part of the inaccuracy of the machine tool at the cold stage; however, as the machine running time increases, thermally-induced errors start to play a major role in machined workpiece accuracy. Dimensional accuracy of machined parts could be affected by several factors, such as the machine tool’s condition, the workpiece material, machining procedures and the operator’s skill. Of these, the machine condition plays an important role in determining the machine’s performance and its effects on the final dimensions of machined parts. The machine’s condition can be evaluated by its errors which include the machine’s built-in geometric and kinematic error, thermal error, cutting force-induced error and other errors.This research represents a detailed study of the effects of thermal errors of a machine tool on the dimensional accuracy of the parts produced on it. A new model has been developed for the prediction of thermally-induced errors of a three-axis machine tool. By applying the proposed model to real machining examples, the dimensional accuracy of machined parts was improved. The research work presented in this thesis has the following four unique characteristics:‱ Investigated the thermal effects on the dimensional accuracy of machined parts by machining several components at different thermal conditions of a machine tool to establish a direct relationship between the dimensional accuracy of machined parts and the machine tool’s thermal status.‱ Developed a new model for calculating thermally-induced volumetric error where the three axial positioning errors were modelled as functions of ball screw nut temperature and travel distance. The influences of the other 18 error components were ignored due to their insignificant influence.‱ Employed a Laser Doppler Displacement Meter (LDDM) with three thermocouples, instead of the expensive laser interferometer and the large number of thermocouples required by the traditional model, to assess the thermally-induced volumetric errors of a three-axis CNC machining centre. The thermally-induced volumetric error predictions were in good agreement with the measured results.‱ Applied the newly developed thermally-induced volumetric error compensation model for drilling operations to improve the positioning accuracy of drilled holes. The results show that positioning accuracy of the drilled holes was improved significantly after compensation. The absolute reduction of the positioning errors of drilled holes was an average 30.44 ÎŒm at the thermal stable stage, while the average relative reduction ratio of these errors was 77%.Therefore, the proposed thermally-induced volumetric error compensation model can bean effective tool for enhancing the machining accuracy of existing machine tools used in the industry

    Conference on Thermal Issues in Machine Tools: Proceedings

    Get PDF
    Inhomogeneous and changing temperature distributions in machine tools lead to sometimes considerable quality problems in the manufacturing process. In addition, the switching on and off of aggregates, for example, leads to further fluctuations in the temperature field of machine tools. More than 100 specialists discussed these and other topics from the field of thermal research at the 1st Conference on Termal Issues in Machine Tools in Dresden from 22 to 23 March.:Efficient modelling and computation of structure-variable thermal behavior of machine tools S. Schroeder, A. Galant, B. Kauschinger, M. Beitelschmidt Parameter identification software for various thermal model types B. Hensel, S. Schroeder, K. Kabitzsch Minimising thermal error issues on turning centre M. MareĆĄ, O. HorejĆĄ, J. Hornych The methods for controlled thermal deformations in machine tools A. P. Kuznetsov, H.-J. Koriath, A.O. Dorozhko Efficient FE-modelling of the thermo-elastic behaviour of a machine tool slide in lightweight design C. Peukert, J. MĂŒller, M. Merx, A. Galant, A. Fickert, B. Zhou, S. StĂ€dtler, S. Ihlenfeldt, M. Beitelschmidt Development of a dynamic model for simulation of a thermoelectric self-cooling system for linear direct drives in machine tools E. Uhlmann, L. Prasol, S.Thom, S. Salein, R. Wiese System modelling and control concepts of different cooling system structures for machine tools J. Popken, L. Shabi, J. Weber, J. Weber The electric drive as a thermo-energetic black box S. Winkler, R. Werner Thermal error compensation on linear direct drive based on latent heat storage I. Voigt, S. Winkler, R. Werner, A. Bucht, W.-G. Drossel Industrial relevance and causes of thermal issues in machine tools M. Putz, C. Richter, J. Regel, M. BrĂ€unig Clustering by optimal subsets to describe environment interdependencies J. GlĂ€nzel, R. Unger, S. Ihlenfeldt Using meta models for enclosures in machine tools F. Pavliček, D. P. Pamies, J. Mayr, S. ZĂŒst, P. Blaser, P. HernĂĄndez-Becerro, K. Wegener Model order reduction of thermal models of machine tools with varying boundary conditions P. HernĂĄndez-Becerro, J. Mayr, P. Blaser, F. Pavliček, K. Wegener Effectiveness of modelling the thermal behaviour of the ball screw unit with moving heat sources taken into account J. Jedrzejewski, Z. Kowal, W. Kwasny, Z. Winiarski Analyzing and optimizing the fluidic tempering of machine tool frames A. Hellmich, J. GlĂ€nzel, A. Pierer Thermo-mechanical interactions in hot stamping L. Penter, N. Pierschel Experimental analysis of the heat flux into the grinding tool in creep feed grinding with CBN abrasives C. Wrobel, D. Trauth, P. Mattfeld, F. Klocke Development of multidimensional characteristic diagrams for the real-time correction of thermally caused TCP-displacements in precise machining M. Putz, C. Oppermann, M. BrĂ€unig Measurement of near cutting edge temperatures in the single point diamond turning process E. Uhlmann, D. Oberschmidt, S. Frenzel, J. Polte Investigation of heat flows during the milling processes through infrared thermography and inverse modelling T. Helmig, T. Augspurger, Y. Frekers, B. Döbbeler, F. Klocke, R. Kneer Thermally induced displacements of machine tool structure, tool and workpiece due to cutting processes O. HorejĆĄ, M. MareĆĄ, J. Hornych A new calibration approach for a grey-box model for thermal error compensation of a C-Axis C. Brecher, R. Spierling, M. Fey Investigation of passive torque of oil-air lubricated angular contact ball bearing and its modelling J. Kekula, M. Sulitka, P. Koláƙ, P. KohĂșt, J. Shim, C. H. Park, J. Hwang Cooling strategy for motorized spindle based on energy and power criterion to reduce thermal errors S. Grama, A. N. Badhe, A. Mathur Cooling potential of heat pipes and heat exchangers within a machine tool spindleo B. Denkena, B. Bergman, H. Klemme, D. Dahlmann Structure model based correction of machine tools X. Thiem, B. Kauschinger, S. Ihlenfeldt Optimal temperature probe location for the compensation of transient thermal errors G. Aguirre, J. Cilla, J. Otaegi, H. Urreta Adaptive learning control for thermal error compensation on 5-axis machine tools with sudden boundary condition changes P. Blaser, J. Mayr, F. Pavliček, P. HernĂĄndez-Becerro, K. Wegener Hybrid correction of thermal errors using temperature and deformation sensors C. Naumann, C. Brecher, C. Baum, F. Tzanetos, S. Ihlenfeldt, M. Putz Optimal sensor placement based on model order reduction P. Benner, R. Herzog, N. Lang, I. Riedel, J. Saak Workpiece temperature measurement and stabilization prior to dimensional measurement N. S. Mian, S. Fletcher, A. P. Longstaff Measurement of test pieces for thermal induced displacements on milling machines H. Höfer, H. Wiemer Model reduction for thermally induced deformation compensation of metrology frames J. v. d. Boom Local heat transfer measurement A. Kuntze, S. Odenbach, W. Uffrecht Thermal error compensation of 5-axis machine tools using a staggered modelling approach J. Mayr, T. Tiberini. P. Blaser, K. Wegener Design of a Photogrammetric Measurement System for Displacement and Deformation on Machine Tools M. Riedel, J. Deutsch, J. MĂŒller. S. Ihlenfeldt Thermography on Machine Tools M. Riedel, J. Deutsch, J. MĂŒller, S. Ihlenfeldt Test piece for thermal investigations of 5-axis machine tolls by on-machine measurement M. Wiesener. P. Blaser, S. Böhl, J. Mayr, K. Wegene

    The Threat of Plant Toxins and Bioterrorism: A Review

    Get PDF
    The intentional use of highly pathogenic microorganisms, such as bacteria, viruses or their toxins, to spread mass-scale diseases that destabilize populations (with motivations of religious or ideological belief, monetary implications, or political decisions) is defined as bioterrorism. Although the success of a bioterrorism attack is not very realistic due to technical constraints, it is not unlikely and the threat of such an attack is higher than ever before. It is now a fact that the capability to create panic has allured terrorists for the use of biological agents (BAs) to cause terror attacks. In the era of biotechnology and nanotechnology, accessibility in terms of price and availability has spread fast, with new sophisticated BAs often being produced and used. Moreover, there are some BAs that are becoming increasingly important, such as toxins produced by bacteria (e.g., Botulinum toxin, BTX), or Enterotoxyn type B, also known as Staphylococcal Enterotoxin B (SEB)) and extractions from plants. The most increasing records are with regards to the extraction / production of ricin, abrin, modeccin, viscumin and volkensin, which are the most lethal plant toxins known to humans, even in low amounts. Moreover, ricin was also developed as an aerosol biological warfare agent (BWA) by the US and its allies during World War II, but was never used. Nowadays, there are increasing records that show how easy it can be to extract plant toxins and transform them into biological weapon agents (BWAs), regardless of the scale of the group of individuals

    The 29th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft

    The Application of ANN and ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools

    Get PDF
    Thermal errors can have significant effects on Computer Numerical Control (CNC) machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This thesis first reviews different methods of designing thermal error models, before concentrating on employing Artificial Intelligence (AI) methods to design different thermal prediction models. In this research work the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used as the backbone for thermal error modelling. The choice of inputs to the thermal model is a non-trivial decision which is ultimately a compromise between the ability to obtain data that sufficiently correlates with the thermal distortion and the cost of implementation of the necessary feedback sensors. In this thesis, temperature measurement was supplemented by direct distortion measurement at accessible locations. The location of temperature measurement must also provide a representative measurement of the change in temperature that will affect the machine structure. The number of sensors and their locations are not always intuitive and the time required to identify the optimal locations is often prohibitive, resulting in compromise and poor results. In this thesis, a new intelligent system for reducing thermal errors of machine tools using data obtained from thermography data is introduced. Different groups of key temperature points on a machine can be identified from thermal images using a novel schema based on a Grey system theory and Fuzzy C-Means (FCM) clustering method. This novel method simplifies the modelling process, enhances the accuracy of the system and reduces the overall number of inputs to the model, since otherwise a much larger number of thermal sensors would be required to cover the entire structure. An Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means clustering (ANFIS-FCM) is then employed to design the thermal prediction model. In order to optimise the approach, a parametric study is carried out by changing the number of inputs and number of Membership Functions (MFs) to the ANFIS-FCM model, and comparing the relative robustness of the designs. The proposed approach has been validated on three different machine tools under different operation conditions. Thus the proposed system has been shown to be robust to different internal heat sources, ambient changes and is easily extensible to other CNC machine tools. Finally, the proposed method is shown to compare favourably against alternative approaches such as an Artificial Neural Network (ANN) model and different Grey models

    Volume 2 – Conference: Wednesday, March 9

    Get PDF
    10. Internationales Fluidtechnisches Kolloquium:Group 1 | 2: Novel System Structures Group 3 | 5: Pumps Group 4: Thermal Behaviour Group 6: Industrial Hydraulic

    Torque Testing System: Flowserve Corporation

    Get PDF
    Flowserve Corporation provides products and customer support to companies in the process industry for the design, testing, and manufacturing of mechanical seals. This includes, but is not limited to, companies concerned with power generation, fossil fuels, water resources, and chemical processing. In industries where fluid transportation is leveraged, mechanical seals have been utilized in pumps to increase performance. A mechanical seal is a design feature in pumps that seal the impeller housing and allow for little to no leakage. This technology is cutting edge and a considerable amount of research pertaining to the advantageous effects of specialized surface features is being pursued in order to enhance the performance characteristics of Flowserve’s mechanical seals. The purpose of the project was to design an improved torque measurement system to test the specialized features on the seal faces

    Vehicle Interior Access Deployable Worksurface Mechanism Concept Product Design

    Get PDF
    by Premchand Gunachandran The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Professor Mohammad Habibur Rahman Easy access and adjusting the vehicle interior configuration to a variety of situations and uses is the general desire for any vehicle user. To meet such desire an attempt has been made in this study to conceptualize a design to develop a new mechatronic product called re-configurable vehicle interior console mechanism to deploy a worksurface (DWS), which will provide flexible use of the vehicle’s interior of both partial and fully autonomous vehicles. This re-configurable vehicle interior console will deploy the DWS using a power sliding mechanism concept enabled by electrical and electronic control unit circuits. This DWS will have 2 degrees of freedom (DOF) in its operation. Each user can access a DWS by pressing the nearby button. The console will move towards the center of the leg space and the electrical motor actuator and lead screw inside the console will drive the DWS by sliding it up and the DWS will down fold over the lap level of the user to offer a convenient individual worksurface. The inner side of the console body is designed to accommodate four DWS units, two each on its right and left sides, to cater to four users in a vehicle. The DWS power sliding mechanism concept product design will address the problems faced by the extreme users in the carpooling group of office goers, business travellers, family and friends going on a long road travel vacation trips. This DWS mechanism product’s performance and size can be customized, re-designed and modified to assemble inside the console body for the user’s accessibility, personalized and sharing experience in vehicle interiors of SUV, minivan and autonomous vehicles as well. Keywords: Vehicle Interior Access, Deployable Worksurface (DWS), Re-configurable Console, Original Equipment Manufacturer (OEM
    • 

    corecore