2,508 research outputs found

    Whole-Body Exploration with a Manipulator Using Heat Equation

    Full text link
    This paper presents a whole-body robot control method for exploring and probing a given region of interest. The ergodic control formalism behind such an exploration behavior consists of matching the time-averaged statistics of a robot trajectory with the spatial statistics of the target distribution. Most existing ergodic control approaches assume the robots/sensors as individual point agents moving in space. We introduce an approach exploiting multiple kinematically constrained agents on the whole-body of a robotic manipulator, where a consensus among the agents is found for generating control actions. To do so, we exploit an existing ergodic control formulation called heat equation-driven area coverage (HEDAC), combining local and global exploration on a potential field resulting from heat diffusion. Our approach extends HEDAC to applications where robots have multiple sensors on the whole-body (such as tactile skin) and use all sensors to optimally explore the given region. We show that our approach increases the exploration performance in terms of ergodicity and scales well to real-world problems using agents distributed on multiple robot links. We compare our method with HEDAC in kinematic simulation and demonstrate the applicability of an online exploration task with a 7-axis Franka Emika robot.Comment: Submitted to IEEE Robotics and Automation Letter

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Parallel Quantum Rapidly-Exploring Random Trees

    Full text link
    In this paper, we present the Parallel Quantum Rapidly-Exploring Random Tree (Pq-RRT) algorithm, a parallel version of the Quantum Rapidly-Exploring Random Trees (q-RRT) algorithm. Parallel Quantum RRT is a parallel quantum algorithm formulation of a sampling-based motion planner that uses Quantum Amplitude Amplification to search databases of reachable states for addition to a tree. In this work we investigate how parallel quantum devices can more efficiently search a database, as the quantum measurement process involves the collapse of the superposition to a base state, erasing probability information and therefore the ability to efficiently find multiple solutions. Pq-RRT uses a manager/parallel-quantum-workers formulation, inspired by traditional parallel motion planning, to perform simultaneous quantum searches of a feasible state database. We present results regarding likelihoods of multiple parallel units finding any and all solutions contained with a shared database, with and without reachability errors, allowing efficiency predictions to be made. We offer simulations in dense obstacle environments showing efficiency, density/heatmap, and speed comparisons for Pq-RRT against q-RRT, classical RRT, and classical parallel RRT. We then present Quantum Database Annealing, a database construction strategy for Pq-RRT and q-RRT that uses a temperature construct to define database creation over time for balancing exploration and exploitation.Comment: 14 pages, 15 figure

    Accurate Gaussian Process Distance Fields with applications to Echolocation and Mapping

    Full text link
    This paper introduces a novel method to estimate distance fields from noisy point clouds using Gaussian Process (GP) regression. Distance fields, or distance functions, gained popularity for applications like point cloud registration, odometry, SLAM, path planning, shape reconstruction, etc. A distance field provides a continuous representation of the scene. It is defined as the shortest distance from any query point and the closest surface. The key concept of the proposed method is a reverting function used to turn a GP-inferred occupancy field into an accurate distance field. The reverting function is specific to the chosen GP kernel. This paper provides the theoretical derivation of the proposed method and its relationship to existing techniques. The improved accuracy compared with existing distance fields is demonstrated with simulated experiments. The level of accuracy of the proposed approach enables novel applications that rely on precise distance estimation. This work presents echolocation and mapping frameworks for ultrasonic-guided wave sensing in metallic structures. These methods leverage the proposed distance field with a physics-based measurement model accounting for the propagation of the ultrasonic waves in the material. Real-world experiments are conducted to demonstrate the soundness of these frameworks
    • …
    corecore