27,006 research outputs found

    Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis

    Full text link
    The past decade has seen an explosion in the amount of digital information stored in electronic health records (EHR). While primarily designed for archiving patient clinical information and administrative healthcare tasks, many researchers have found secondary use of these records for various clinical informatics tasks. Over the same period, the machine learning community has seen widespread advances in deep learning techniques, which also have been successfully applied to the vast amount of EHR data. In this paper, we review these deep EHR systems, examining architectures, technical aspects, and clinical applications. We also identify shortcomings of current techniques and discuss avenues of future research for EHR-based deep learning.Comment: Accepted for publication with Journal of Biomedical and Health Informatics: http://ieeexplore.ieee.org/abstract/document/8086133

    Performance Analysis of Multiclass Support Vector Machine Classification for Diagnosis of Coronary Heart Diseases

    Full text link
    Automatic diagnosis of coronary heart disease helps the doctor to support in decision making a diagnosis. Coronary heart disease have some types or levels. Referring to the UCI Repository dataset, it divided into 4 types or levels that are labeled numbers 1-4 (low, medium, high and serious). The diagnosis models can be analyzed with multiclass classification approach. One of multiclass classification approach used, one of which is a support vector machine (SVM). The SVM use due to strong performance of SVM in binary classification. This research study multiclass performance classification support vector machine to diagnose the type or level of coronary heart disease. Coronary heart disease patient data taken from the UCI Repository. Stages in this study is preprocessing, which consist of, to normalizing the data, divide the data into data training and testing. The next stage of multiclass classification and performance analysis. This study uses multiclass SVM algorithm, namely: Binary Tree Support Vector Machine (BTSVM), One-Against-One (OAO), One-Against-All (OAA), Decision Direct Acyclic Graph (DDAG) and Exhaustive Output Error Correction Code (ECOC). Performance parameter used is recall, precision, F-measure and Overall accuracy

    CarePre: An Intelligent Clinical Decision Assistance System

    Full text link
    Clinical decision support systems (CDSS) are widely used to assist with medical decision making. However, CDSS typically require manually curated rules and other data which are difficult to maintain and keep up-to-date. Recent systems leverage advanced deep learning techniques and electronic health records (EHR) to provide more timely and precise results. Many of these techniques have been developed with a common focus on predicting upcoming medical events. However, while the prediction results from these approaches are promising, their value is limited by their lack of interpretability. To address this challenge, we introduce CarePre, an intelligent clinical decision assistance system. The system extends a state-of-the-art deep learning model to predict upcoming diagnosis events for a focal patient based on his/her historical medical records. The system includes an interactive framework together with intuitive visualizations designed to support the diagnosis, treatment outcome analysis, and the interpretation of the analysis results. We demonstrate the effectiveness and usefulness of CarePre system by reporting results from a quantities evaluation of the prediction algorithm and a case study and three interviews with senior physicians

    Fully Automated Myocardial Infarction Classification using Ordinary Differential Equations

    Full text link
    Portable, Wearable and Wireless electrocardiogram (ECG) Systems have the potential to be used as point-of-care for cardiovascular disease diagnostic systems. Such wearable and wireless ECG systems require automatic detection of cardiovascular disease. Even in the primary care, automation of ECG diagnostic systems will improve efficiency of ECG diagnosis and reduce the minimal training requirement of local healthcare workers. However, few fully automatic myocardial infarction (MI) disease detection algorithms have well been developed. This paper presents a novel automatic MI classification algorithm using second order ordinary differential equation (ODE) with time varying coefficients, which simultaneously captures morphological and dynamic feature of highly correlated ECG signals. By effectively estimating the unobserved state variables and the parameters of the second order ODE, the accuracy of the classification was significantly improved. The estimated time varying coefficients of the second order ODE were used as an input to the support vector machine (SVM) for the MI classification. The proposed method was applied to the PTB diagnostic ECG database within Physionet. The overall sensitivity, specificity, and classification accuracy of 12 lead ECGs for MI binary classifications were 98.7%, 96.4% and 98.3%, respectively. We also found that even using one lead ECG signals, we can reach accuracy as high as 97%. Multiclass MI classification is a challenging task but the developed ODE approach for 12 lead ECGs coupled with multiclass SVM reached 96.4% accuracy for classifying 5 subgroups of MI and healthy controls

    RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records

    Full text link
    We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong performance of RNNs, it is often challenging for users to understand why the model makes a particular prediction. Such black-box nature of RNNs can impede its wide adoption in clinical practice. Furthermore, we have no established methods to interactively leverage users' domain expertise and prior knowledge as inputs for steering the model. Therefore, our design study aims to provide a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers. Following the iterative design process between the experts, we design, implement, and evaluate a visual analytics tool called RetainVis, which couples a newly improved, interpretable and interactive RNN-based model called RetainEX and visualizations for users' exploration of EMR data in the context of prediction tasks. Our study shows the effective use of RetainVis for gaining insights into how individual medical codes contribute to making risk predictions, using EMRs of patients with heart failure and cataract symptoms. Our study also demonstrates how we made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity. This study will provide a useful guideline for researchers that aim to design an interpretable and interactive visual analytics tool for RNNs.Comment: Accepted at IEEE VIS 2018. To appear in IEEE Transactions on Visualization and Computer Graphics in January 201

    Medical Knowledge Embedding Based on Recursive Neural Network for Multi-Disease Diagnosis

    Full text link
    The representation of knowledge based on first-order logic captures the richness of natural language and supports multiple probabilistic inference models. Although symbolic representation enables quantitative reasoning with statistical probability, it is difficult to utilize with machine learning models as they perform numerical operations. In contrast, knowledge embedding (i.e., high-dimensional and continuous vectors) is a feasible approach to complex reasoning that can not only retain the semantic information of knowledge but also establish the quantifiable relationship among them. In this paper, we propose recursive neural knowledge network (RNKN), which combines medical knowledge based on first-order logic with recursive neural network for multi-disease diagnosis. After RNKN is efficiently trained from manually annotated Chinese Electronic Medical Records (CEMRs), diagnosis-oriented knowledge embeddings and weight matrixes are learned. Experimental results verify that the diagnostic accuracy of RNKN is superior to that of some classical machine learning models and Markov logic network (MLN). The results also demonstrate that the more explicit the evidence extracted from CEMRs is, the better is the performance achieved. RNKN gradually exhibits the interpretation of knowledge embeddings as the number of training epochs increases

    EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning

    Full text link
    Objective: Electronic medical records (EMRs) contain an amount of medical knowledge which can be used for clinical decision support (CDS). Our objective is a general system that can extract and represent these knowledge contained in EMRs to support three CDS tasks: test recommendation, initial diagnosis, and treatment plan recommendation, with the given condition of one patient. Methods: We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a single record. Three bipartite subgraphs (bi-graphs) were extracted from the EMKN to support each task. One part of the bi-graph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bi-graph was regarded as a Markov random field to support the inference. Three lazy energy functions and one parameter-based energy function were proposed, as well as two knowledge representation learning-based energy functions, which can provide a distributed representation of medical entities. Three measures were utilized for performance evaluation. Results: On the initial diagnosis task, 80.11% of the test records identified at least one correct disease from top 10 candidates. Test and treatment recommendation results were 87.88% and 92.55%, respectively. These results altogether indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships in regards to knowledge level. Conclusion: Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require designing their energy functions individually

    Deep EHR: Chronic Disease Prediction Using Medical Notes

    Full text link
    Early detection of preventable diseases is important for better disease management, improved inter-ventions, and more efficient health-care resource allocation. Various machine learning approacheshave been developed to utilize information in Electronic Health Record (EHR) for this task. Majorityof previous attempts, however, focus on structured fields and lose the vast amount of information inthe unstructured notes. In this work we propose a general multi-task framework for disease onsetprediction that combines both free-text medical notes and structured information. We compareperformance of different deep learning architectures including CNN, LSTM and hierarchical models.In contrast to traditional text-based prediction models, our approach does not require disease specificfeature engineering, and can handle negations and numerical values that exist in the text. Ourresults on a cohort of about 1 million patients show that models using text outperform modelsusing just structured data, and that models capable of using numerical values and negations in thetext, in addition to the raw text, further improve performance. Additionally, we compare differentvisualization methods for medical professionals to interpret model predictions.Comment: Machine Learning for Health Care conferenc

    Statistical feature embedding for heart sound classification

    Full text link
    Cardiovascular Disease (CVD) is considered as one of the principal causes of death in the world. Over recent years, this field of study has attracted researchers' attention to investigate heart sounds' patterns for disease diagnostics. In this study, an approach is proposed for normal/abnormal heart sound classification on the Physionet challenge 2016 dataset. For the first time, a fixed-length feature vector; called i-vector; is extracted from each heart sound using Mel Frequency Cepstral Coefficient (MFCC) features. Afterwards, Principal Component Analysis (PCA) transform and Variational Autoencoder (VAE) are applied on the i-vector to achieve dimension reduction. Eventually, the reduced size vector is fed to Gaussian Mixture Models (GMMs) and Support Vector Machine (SVM) for classification purpose. Experimental results demonstrate the proposed method could achieve a performance improvement of 16% based on Modified Accuracy (MAcc) compared with the baseline system on the Physoinet dataset

    Health Analytics: a systematic review of approaches to detect phenotype cohorts using electronic health records

    Full text link
    The paper presents a systematic review of state-of-the-art approaches to identify patient cohorts using electronic health records. It gives a comprehensive overview of the most commonly de-tected phenotypes and its underlying data sets. Special attention is given to preprocessing of in-put data and the different modeling approaches. The literature review confirms natural language processing to be a promising approach for electronic phenotyping. However, accessibility and lack of natural language process standards for medical texts remain a challenge. Future research should develop such standards and further investigate which machine learning approaches are best suited to which type of medical data
    • …
    corecore