12,285 research outputs found

    Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking

    Get PDF
    Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge 305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL · kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity may be associated with dynamic regulation of self-paced exercise

    Impaired thermoregulatory function during dynamic exercise in multiple sclerosis

    Full text link
    INTRODUCTION: Impairments in sudomotor function during passive whole-body heating have been reported in multiple sclerosis (MS), a demyelinating disease of the CNS that disrupts autonomic function. However, the capability of the thermoregulatory system to control body temperature during exercise has never been assessed in MS. Thus, the aim of the present study was to test the hypothesis that thermoregulatory function is impaired in MS patients compared to healthy controls (CON) exercising at similar rates of metabolic heat production. METHODS: Sweating and skin blood flow responses were compared between 12 individuals diagnosed with relapsing-remitting MS (9 females, 3 males) and 12 sex-, age-, mass- and BSA-matched healthy controls during a single bout of cycling exercise (rate of metabolic heat production: ~4.5 W/kg) for 60 min in a climate-controlled room (25 °C, 30% RH). RESULTS: Individuals with MS exhibited an attenuated increase in cumulative whole-body sweat loss after 30 min (MS: 72 ± 51; CON: 104 ± 37 g, p=0.04) and 60 min (MS: 209 ± 94; CON: 285 ± 62 g, p=0.02), as well as lower sweating thermosensitivity (MS: 0.49 ± 0.26; CON: 0.86 ± 0.30 mg/cm2/min/°C, p=0.049). Despite evidence for thermoregulatory dysfunction, there were no differences between MS and CON in esophageal or rectal temperatures at 30 or 60 min time points (p>0.05). Cutaneous vasculature responses were also not different in MS compared to CON (p>0.05). CONCLUSION: Taken together, MS blunts sweating responses during exercise while cutaneous vasculature responses are preserved. Altered mechanisms of body temperature regulation in persons with MS may lead to temporary worsening of disease symptoms and limit exercise tolerance under more thermally challenging conditions.Accepted manuscrip

    Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium

    Get PDF
    One of the main outcomes of aerobic endurance exercise training is the improved maximal oxygen uptake, and this is pivotal to the improved work capacity that follows the exercise training. Improved maximal oxygen uptake in turn is at least partly achieved because exercise training increases the ability of the myocardium to produce a greater cardiac output. In healthy subjects, this has been demonstrated repeatedly over many decades. It has recently emerged that this scenario may also be true under conditions of an initial myocardial dysfunction. For instance, myocardial improvements may still be observed after exercise training in post-myocardial infarction heart failure. In both health and disease, it is the changes that occur in the individual cardiomyocytes with respect to their ability to contract that by and large drive the exercise training-induced adaptation to the heart. Here, we review the evidence and the mechanisms by which exercise training induces beneficial changes in the mammalian myocardium, as obtained by means of experimental and clinical studies, and argue that these changes ultimately alter the function of the whole heart and contribute to the changes in whole-body function

    Understanding the Expenditure and Recovery of Anaerobic Work Capacity Using Noninvasive Sensors

    Get PDF
    The objective of this research is to advance the understanding of human performance to allow for optimized efforts on specific tasks. This is accomplished by 1) understanding the expenditure and recovery of Anaerobic Work Capacity (AWC) as related to the Critical Power (CP) of a human, and 2) determining if and how a case for an energy-management system to optimize energy expenditure and recovery can be made in real-time using noninvasive sensors. As humans exert energy, the body converts fuel into mechanical power through both aerobic and anaerobic energy systems. The mechanical power produced can be measured through the use of a cycle ergometer and the use of the energy systems can be measured by observing biological artifacts with sensors. There is a Critical Power level that a human can theoretically operate at indefinitely and there is a well-established theory in the literature to predict the depletion of a human’s finite Anaerobic Work Capacity based on this Critical Power. The literature however lacks a robust model for understanding the recovery of the Anaerobic Work Capacity. Because of this, a cycling study was conducted with ten regularly-exercising subjects (9 male, 1 female aged 23-44). First, the CP and AWC of the subjects were determined by a 3-minute all-out intensity cycling test. The subjects performed several interval protocols to exhaustion with recovery intervals to quantify how much AWC was recovered in each interval. Results: It was determined that sub-Critical Power recovery is not proportional to above-Critical Power expenditure. The amount of AWC recovered is influenced more by the power level held during recovery than the amount of time spent in recovery. The following conclusions are discussed in this thesis: 1) relationships between measurable biological artifacts and biological processes that are proven to exist in the literature; 2) expenditure and recovery of Anaerobic Work Capacity; 3) methods to use real-time, noninvasive sensor data to determine the status of human work capacity; and 4) how the results can be used in a human-in-the-loop feedback control system to optimize performance for a given task

    Self-control exertion and glucose supplementation prior to endurance performance

    Get PDF
    Objectives: Completion of a task requiring self-control may negatively impact on subsequent self-regulatory efforts. This study explored a) whether this effect occurs during a well-practiced endurance task, b) the potential for glucose supplementation to moderate this effect, and c) whether this effect differed over time. Method: Fourteen trained cyclists completed four simulated 16 km time trials on an electromagnetically braked cycle ergometer. Prior to each time trial, participants completed a congruent Stroop task or an incongruent Stroop task that required self-control. They also received either a glucose-based drink or placebo. Participants’ performance time and heart rate were recorded throughout the time trials. Results: Multilevel growth curve analysis revealed a significant three-way interaction between self-control, glucose, and time (b = -0.91; p = 0.02). When participants did not exert self-control (congruent Stroop) or consume glucose (placebo drink) they were slowest during the early stages of the time trial but quickest over the full distance. No differences were found in heart rate across the four conditions. Conclusions: Findings suggest that pacing may explain why self-control exertion interferes with endurance performance. Moreover, the debate revolving around depletion of self-control must consider that any observed effects may be dependent on the timing of performance inspection

    Modeling the Expenditure and Recovery of Anaerobic Work Capacity in Cycling

    Get PDF
    The objective of this research is to model the expenditure and recovery of Anaerobic Work Capacity (AWC) as related to Critical Power (CP) during cycling. CP is a theoretical value at which a human can operate indefinitely and AWC is the energy that can be expended above CP. There are several models to predict AWC-depletion, however, only a few to model AWC recovery. A cycling study was conducted with nine recreationally active subjects. CP and AWC were determined by a 3-min all-out test. The subjects performed interval tests at three recovery intervals (15 s, 30 s, or 60 s) and three recovery powers (0.50CP, 0.75CP, and CP). It was determined that the rate of expenditure exceeds recovery and the amount of AWC recovered is influenced more by recovery power level than recovery duration. Moreover, recovery rate varies by individual and thus, a robust mathematical model for expenditure and recovery of AWC is needed

    Financial incentives to promote active travel: an evidence review and economic framework

    Get PDF
    ContextFinancial incentives, including taxes and subsidies, can be used to encourage behavior change. They are common in transport policy for tackling externalities associated with use of motor vehicles, and in public health for influencing alcohol consumption and smoking behaviors. Financial incentives also offer policymakers a compromise between “nudging,” which may be insufficient for changing habitual behavior, and regulations that restrict individual choice.Evidence acquisitionThe literature review identified studies published between January 1997 and January 2012 of financial incentives relating to any mode of travel in which the impact on active travel, physical activity, or obesity levels was reported. It encompassed macroenvironmental schemes, such as gasoline taxes, and microenvironmental schemes, such as employer-subsidized bicycles. Five relevant reviews and 20 primary studies (of which nine were not included in the reviews) were identified.Evidence synthesisThe results show that more-robust evidence is required if policymakers are to maximize the health impact of fiscal policy relating to transport schemes of this kind.ConclusionsDrawing on a literature review and insights from the SLOTH (sleep, leisure, occupation, transportation, and home-based activities) time-budget model, this paper argues that financial incentives may have a larger role in promoting walking and cycling than is acknowledged generally
    • …
    corecore