2 research outputs found

    Ultra-Low Power Design of Wearable Cardiac Monitoring Systems

    Get PDF
    This paper presents the system-level architecture of novel ultra-low power wireless body sensor nodes (WBSNs) for real-time cardiac monitoring and analysis, and discusses the main design challenges of this new generation of medical devices. In particular, it highlights first the unsustainable energy cost incurred by the straightforward wireless streaming of raw data to external analysis servers. Then, it introduces the need for new cross-layered design methods (beyond hardware and software boundaries) to enhance the autonomy of WBSNs for ambulatory monitoring. In fact, by embedding more onboard intelligence and exploiting electrocardiogram (ECG) specific knowledge, it is possible to perform real-time compressive sensing, filtering, delineation and classification of heartbeats, while dramatically extending the battery lifetime of cardiac monitoring systems. The paper concludes by showing the results of this new approach to design ultra-low power wearable WBSNs in a real-life platform commercialized by SmartCardia. This wearable system allows a wide range of applications, including multi-lead ECG arrhythmia detection and autonomous sleep monitoring for critical scenarios, such as monitoring of the sleep state of airline pilot

    Robust Algorithms for Unattended Monitoring of Cardiovascular Health

    Get PDF
    Cardiovascular disease is the leading cause of death in the United States. Tracking daily changes in one’s cardiovascular health can be critical in diagnosing and managing cardiovascular disease, such as heart failure and hypertension. A toilet seat is the ideal device for monitoring parameters relating to a subject’s cardiac health in his or her home, because it is used consistently and requires no change in daily habit. The present work demonstrates the ability to accurately capture clinically relevant ECG metrics, pulse transit time based blood pressures, and other parameters across subjects and physiological states using a toilet seat-based cardiovascular monitoring system, enabled through advanced signal processing algorithms and techniques. The algorithms described herein have been designed for use with noisy physiologic signals measured at non-standard locations. A key component of these algorithms is the classification of signal quality, which allows automatic rejection of noisy segments before feature delineation and interval extractions. The present delineation algorithms have been designed to work on poor quality signals while maintaining the highest possible temporal resolution. When validated on standard databases, the custom QRS delineation algorithm has best-in-class sensitivity and precision, while the photoplethysmogram delineation algorithm has best-in-class temporal resolution. Human subject testing on normative and heart failure subjects is used to evaluate the efficacy of the proposed monitoring system and algorithms. Results show that the accuracy of the measured heart rate and blood pressure are well within the limits of AAMI standards. For the first time, a single device is capable of monitoring long-term trends in these parameters while facilitating daily measurements that are taken at rest, prior to the consumption of food and stimulants, and at consistent times each day. This system has the potential to revolutionize in-home cardiovascular monitoring
    corecore