3,297 research outputs found

    A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era

    Full text link
    Heart sound auscultation has been demonstrated to be beneficial in clinical usage for early screening of cardiovascular diseases. Due to the high requirement of well-trained professionals for auscultation, automatic auscultation benefiting from signal processing and machine learning can help auxiliary diagnosis and reduce the burdens of training professional clinicians. Nevertheless, classic machine learning is limited to performance improvement in the era of big data. Deep learning has achieved better performance than classic machine learning in many research fields, as it employs more complex model architectures with stronger capability of extracting effective representations. Deep learning has been successfully applied to heart sound analysis in the past years. As most review works about heart sound analysis were given before 2017, the present survey is the first to work on a comprehensive overview to summarise papers on heart sound analysis with deep learning in the past six years 2017--2022. We introduce both classic machine learning and deep learning for comparison, and further offer insights about the advances and future research directions in deep learning for heart sound analysis

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Phonocardiographic sensing using deep learning for abnormal heartbeat detection

    Get PDF
    Deep learning-based cardiac auscultation is of significant interest to the healthcare community as it can help reducing the burden of manual auscultation with automated detection of abnormal heartbeats. However, the problem of automatic cardiac auscultation is complicated due to the requirement of reliable and highly accurate systems, which are robust to the background noise in the heartbeat sound. In this paper, we propose a Recurrent Neural Networks (RNNs)-based automated cardiac auscultation solution. Our choice of RNNs is motivated by their great success of modeling sequential or temporal data even in the presence of noise. We explore the use of various RNN models, and demonstrate that these models significantly outperform the best reported results in the literature. We also present the run-time complexity of various RNNs, which provides insight about their complexity versus performance trade-offs
    corecore