31,978 research outputs found

    Short-segment heart sound classification using an ensemble of deep convolutional neural networks

    Get PDF
    This paper proposes a framework based on deep convolutional neural networks (CNNs) for automatic heart sound classification using short-segments of individual heart beats. We design a 1D-CNN that directly learns features from raw heart-sound signals, and a 2D-CNN that takes inputs of two- dimensional time-frequency feature maps based on Mel-frequency cepstral coefficients (MFCC). We further develop a time-frequency CNN ensemble (TF-ECNN) combining the 1D-CNN and 2D-CNN based on score-level fusion of the class probabilities. On the large PhysioNet CinC challenge 2016 database, the proposed CNN models outperformed traditional classifiers based on support vector machine and hidden Markov models with various hand-crafted time- and frequency-domain features. Best classification scores with 89.22% accuracy and 89.94% sensitivity were achieved by the ECNN, and 91.55% specificity and 88.82% modified accuracy by the 2D-CNN alone on the test set.Comment: 8 pages, 1 figure, conferenc

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Phonocardiographic sensing using deep learning for abnormal heartbeat detection

    Get PDF
    Deep learning-based cardiac auscultation is of significant interest to the healthcare community as it can help reducing the burden of manual auscultation with automated detection of abnormal heartbeats. However, the problem of automatic cardiac auscultation is complicated due to the requirement of reliable and highly accurate systems, which are robust to the background noise in the heartbeat sound. In this paper, we propose a Recurrent Neural Networks (RNNs)-based automated cardiac auscultation solution. Our choice of RNNs is motivated by their great success of modeling sequential or temporal data even in the presence of noise. We explore the use of various RNN models, and demonstrate that these models significantly outperform the best reported results in the literature. We also present the run-time complexity of various RNNs, which provides insight about their complexity versus performance trade-offs
    corecore