110 research outputs found

    Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals

    Get PDF
    A method for deriving respiratory rate from smartphone-camera-acquired pulse photoplethysmographic (SCPPG) signal is presented. Our method exploits respiratory information by examining the pulse wave velocity and dispersion from the SCPPG waveform and we term these indices as the pulse width variability (PWV). A method to combine information from several derived respiration signals is also presented and it is used to combine PWV information with other methods such as pulse amplitude variability (PAV), pulse rate variability (PRV), and respiration-induced amplitude and frequency modulations (AM and FM) in SCPPG signals Evaluation is performed on a database containing SCPPG signals recorded from 30 subjects during controlled respiration experiments at rates from 0.2 to 0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates (0.2–0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRVbased methods with low relative error (median of order 0.5% and interquartile range of order 2.5%). The accuracy can be improved by combining PWV and PRV with other methods such as PAV, AM and/or FM methods. Combination of these methods yielded low relative error for normal respiratory rates, and Institute of Physics and Engineering in Medicine maintained good performance at higher rates (0.5–0.6 Hz) when using the iPhone 4S or iPod 5 devices

    Pulse Arrival Time estimation based on Electrocardiography and Bioimpedance measurements in non-standard points

    Get PDF
    Arterial stiffness and blood pressure can be diagnosed by estimating the pulse arrival time (PAT). To do so, electrocardiography (ECG) and impendance plethysmography (IPG) methods are employed. In this paper we propose a non-invasive, low-cost approach that uses non-standard points to measure the electrocardiogram and the bioimpedance. To determine if the ECG and BIM-IPG can be properly measured in the upper extremities open new doors to the design of comfortable portable devices that could constantly be monitoring the user outside hospital environment. This could be especially interesting for patients that suffer of chronic circulatory diseases. Performed tests in the laboratory show the validity of the proposed method.2014/201

    Impact of the PPG sampling rate in the pulse rate variability indices evaluating several fiducial points in different pulse waveforms

    Get PDF
    The main aim of this work is to study the effect of the sampling rate of the photoplethysmographic (PPG) signal for pulse rate variability (PRV) analysis in the time and frequency domains, in stationary conditions. Forehead and finger PPG signals were recorded at 1000 Hz during a rest state, with red and infrared wavelengths, simultaneously with the electrocardiogram (ECG). The PPG sampling rate has been reduced by decimation, obtaining signals at 500 Hz, 250 Hz, 125 Hz, 100 Hz, 50 Hz and 25 Hz. Five fiducial points were computed: apex, up-slope, medium, line-medium and medium interpolate point. The medium point is located in the middle of the up-slope of the pulse. The medium interpolate point is a new proposal as fiducial point that consider the abrupt up-slope of the PPG pulse, so it can be recovered by linear interpolation when the sampling rate is reduced. The error performed in the temporal location of the fiducial points was computed. Pulse period time interval series were obtained from all PPG signals and fiducial points, and compared with the RR intervals obtained from the ECG. Heart rate variability and PRV signals were estimated and classical time and frequency domain indices were computed. The results showed that the medium interpolate point of the PPG pulse was the most accurate fiducial point under different PPG morphologies and sensor locations, when sampling rate was reduced. The error in the temporal location points and in the estimation of time and frequency indices was always lower when medium interpolate point was used for all considered sampling rates and for both signals, finger and forehead. The results also showed that the sampling rate of PPG signal can be reduced up to 100 Hz without causing significant changes in the time and frequency indices, when medium interpolate point was used as fiducial point. Therefore, the use of the medium interpolate point is recommended when working at low sampling rates

    Blind Source Separation for the Processing of Contact-Less Biosignals

    Get PDF
    (Spatio-temporale) Blind Source Separation (BSS) eignet sich für die Verarbeitung von Multikanal-Messungen im Bereich der kontaktlosen Biosignalerfassung. Ziel der BSS ist dabei die Trennung von (z.B. kardialen) Nutzsignalen und Störsignalen typisch für die kontaktlosen Messtechniken. Das Potential der BSS kann praktisch nur ausgeschöpft werden, wenn (1) ein geeignetes BSS-Modell verwendet wird, welches der Komplexität der Multikanal-Messung gerecht wird und (2) die unbestimmte Permutation unter den BSS-Ausgangssignalen gelöst wird, d.h. das Nutzsignal praktisch automatisiert identifiziert werden kann. Die vorliegende Arbeit entwirft ein Framework, mit dessen Hilfe die Effizienz von BSS-Algorithmen im Kontext des kamera-basierten Photoplethysmogramms bewertet werden kann. Empfehlungen zur Auswahl bestimmter Algorithmen im Zusammenhang mit spezifischen Signal-Charakteristiken werden abgeleitet. Außerdem werden im Rahmen der Arbeit Konzepte für die automatisierte Kanalauswahl nach BSS im Bereich der kontaktlosen Messung des Elektrokardiogramms entwickelt und bewertet. Neuartige Algorithmen basierend auf Sparse Coding erwiesen sich dabei als besonders effizient im Vergleich zu Standard-Methoden.(Spatio-temporal) Blind Source Separation (BSS) provides a large potential to process distorted multichannel biosignal measurements in the context of novel contact-less recording techniques for separating distortions from the cardiac signal of interest. This potential can only be practically utilized (1) if a BSS model is applied that matches the complexity of the measurement, i.e. the signal mixture and (2) if permutation indeterminacy is solved among the BSS output components, i.e the component of interest can be practically selected. The present work, first, designs a framework to assess the efficacy of BSS algorithms in the context of the camera-based photoplethysmogram (cbPPG) and characterizes multiple BSS algorithms, accordingly. Algorithm selection recommendations for certain mixture characteristics are derived. Second, the present work develops and evaluates concepts to solve permutation indeterminacy for BSS outputs of contact-less electrocardiogram (ECG) recordings. The novel approach based on sparse coding is shown to outperform the existing concepts of higher order moments and frequency-domain features

    Optimal fiducial points for pulse rate variability analysis from forehead and finger PPG signals

    Get PDF
    Objective: The aim of this work is to evaluate and compare five fiducialpoints for the temporal location of each pulse wave from forehead and fingerphotoplethysmographic pulse waves signals (PPG) to perform pulse rate variability(PRV) analysis as a surrogate of heart rate variability (HRV) analysis. Approach: Forehead and finger PPG signals were recorded during tilt-table testsimultaneously to the ECG. Artifacts were detected and removed and, five fiducialpoints were computed: apex, middle-amplitude and foot points of the PPG signal,apex point of the first derivative signal and, the intersection point of the tangent tothe PPG waveform at the apex of the derivative PPG signal and the tangent to thefoot of the PPG pulse defined as intersecting tangents method. Pulse period (PP)time intervals series were obtained from both PPG signals and compared to the RRintervals obtained from the ECG. Heart and pulse rate variability signals (HRV andPRV) were estimated and, classical time and frequency domain indices were computed. Main Results: The middle-amplitude point of the PPG signal (nM), the apexpoint of the first derivative (n*A), and the tangents intersection point (nT) are themost suitable fiducial points for PRV analysis, which result in the lowest relativeerrors estimated between PRV and HRV indices, higher correlation coefficients and reliability indexes. Statistically significant differences according to the Wilcoxon testbetween PRV and HRV signals were found for the apex and foot fiducial points ofthe PPG, as well as the lowest agreement between RR and PP series according toBland-Altman analysis. Hence, they have been considered less accurate for variabilityanalysis. In addition, the relative errors are significantly lower fornMandn*Afeaturesby using Friedman statistics with Bonferroni multiple-comparison test and, we proposenMas the most accurate fiducial point. Based on our results, forehead PPG seems toprovide more reliable information for a PRV assessment than finger PPG. Significance: The accuracy of the pulse wave detections depends on the morphologyof the PPG. There is therefore a need to widely define the most accurate fiducial pointto perform a PRV analysis under non-stationary conditions based on different PPGsensor locations and signal acquisition techniques

    Non-invasive techniques for respiratory information extraction based on pulse photoplethysmogram and electrocardiogram

    Get PDF
    El objetivo principal de esta tesis es el desarrollo de métodos no invasivos para la extracción de información respiratoria a partir de dos señales biomédicas ampliamente utilizadas en la rutina clínica: el electrocardiograma (ECG) y la señal fotopletismográfica de pulso (PPG). La motivación de este estudio es la conveniencia de monitorizar información respiratoria a partir de dispositivos no invasivos que permita sustituir las técnicas actuales que podrían interferir con la respiración natural y que presentan inconvenientes en algunas aplicaciones como la prueba de esfuerzo y los estudios del sueño. Además, si estos dispositivos no invasivos son los ya utilizados en la rutina clínica, la información respiratoria extraída de ellos representa un valor añadido que permite tener una visión más completa del paciente. DESARROLLO TEÓRICO Esta tesis se divide en 6 capítulos. El Capítulo 1 introduce la problemática, motivaciones y objetivos del estudio. También introduce el origen fisiológico de las señales estudiadas ECG y PPG, y cómo y por qué tienen información autonómica y respiratoria que se puede extraer de ellas. El Capítulo 2 aborda la obtención de información respiratoria a partir del ECG. Se han propuesto varios métodos para la obtención de la respiración a partir del ECG (EDR, del inglés ¿ECG derived respiration?). Su rendimiento se suele ver muy afectado en entornos altamente no estacionarios y ruidosos como la prueba de esfuerzo. No obstante, se han propuesto algunas alternativas, como una basada en el ángulo de rotación del eje eléctrico (obtenido del ECG), que es el que mejor funciona en prueba de esfuerzo según nuestros conocimientos. Este método requiere de tres derivaciones ortogonales y es muy dependiente de cada una de ellas, i.e., el método no es aplicable o su rendimiento se reduce significativamente si hay algún problema en alguna de las derivaciones requeridas. En el Capítulo 2 se propone un método EDR nuevo basado en las pendientes del QRS y el ángulo de la onda R. El Capítulo 3 aborda a obtención de información respiratoria a partir de la señal PPG. Se propone un método nuevo para obtener la tasa respiratoria a partir de la señal PPG. Explota una modulación respiratoria en la variabilidad de anchura de pulso (PWV) relacionada con la velocidad y dispersión de la onda de pulso. El Capítulo 4 aborda la extracción de información respiratoria a partir de señales PPG registradas con smarthpones (SCPPG), mediante la adaptación de los métodos basados en la señal PPG presentados en el Capítulo 3. En el Capítulo 5 se propone un método para el diagnóstico del síndrome de apnea obstructiva del sueño (OSAS) en niños basado únicamente en la señal PPG. El OSAS es una disfunción relacionada con la respiración y el sueño que se diagnostica mediante polisomnografía (PSG). La PSG es el registro nocturno de muchas señales durante el sueño, siendo muy difícil de aplicar en entornos ambulatorios. El método que presenta esta tesis está enfocado a diagnosticar el OSAS en niños utilizando únicamente la señal PPG que permitiría considerar un diagnóstico ambulatorio con sus ventajas económicas y sociales. Finalmente, el Capítulo 6 resume las contribuciones originales y las conclusiones principales de esta tesis, y propone posibles extensiones del trabajo. CONCLUSIÓN El método presentado en el Capítulo 2 para estimar la tasa respiratoria a partir de las pendientes del complejo QRS y el ángulo de la onda R en el ECG demostró ser robusto en entornos altamente no estacionarios y ruidosos y por tanto ser aplicable durante ejercicio incluyendo entrenamiento deportivo. Además, es independiente de un conjunto específico de derivaciones y, por tanto, un problema en alguna de ellas no implica una reducción considerable del rendimiento. El método presentado en el Capítulo 3 para estimar la tasa respiratoria a partir de la PWV extraída de la señal PPG está mucho menos afectada por el tono simpático que otros métodos presentados en la literatura que suelen basarse en la amplitud y/o la tasa de pulso. Esto permite una mayor precisión que otros métodos basados en PPG. Además, se propone un método para combinar información de diferentes señales respiratorias, y se utiliza para estimar la tasa respiratoria a partir de la PWV en combinación con otros métodos basados en la señal PPG, mejorando la precisión de la estimación incluso en comparación con otros métodos en la literatura que requieren el ECG o la presión sanguínea. Los métodos propuestos en el Capítulo 4 para estimar la tasa respiratoria mediante señales SCPPG estimaron de forma precisa la tasa respiratoria en sus rangos espontáneos habituales (0.2-0.4 Hz) e incluso a tasas más altas (hasta 0.5 Hz o 0.6 Hz, dependiendo del dispositivo utilizado). El único requerimiento es que el smartphone tenga un luz tipo flash y una cámara para grabar una yema del dedo sobre ella. La popularidad de los smartphones los convierte en dispositivos de acceso y aceptación r¿apidos. Así, para la población general es potencialmente aceptable un método que funciona en smartphones, pudiendo facilitar la medida de algunas constantes vitales utilizando solo la yema del dedo. El método presentado en el Capítulo 5 para el diagnóstico del OSAS en niños a partir de la PPG obtuvo una precisión suficiente para la clínica, aunque antes de ser aplicado en dicho entorno, el método debería ser validado en una base de datos más grande.The main objective of this thesis is to develop non-invasive methods for respiration information extraction from two biomedical signals which are widely adopted in clinical routine: the electrocardiogram (ECG) and the pulse photoplethysmographic (PPG) signal. This study is motivated by the desirability of monitoring respiratory information from non-invasive devices allowing to substitute the current respiration-monitoring techniques which may interfere with natural breathing and which are unmanageable in some applications such as stress test or sleep studies. Furthermore, if these noninvasive devices are those already used in the clinical routine, the respiratory information obtained from them represents an added value which allows a more complete overview of the patient status. This thesis is divided into 6 chapters. Chapter 1 of this thesis introduces the problematic, motivations and objectives of this study. It also introduces the physiological origin of studied ECG and PPG signals, and why and how they carry autonomic- and respiration-related information which can be extracted from them. Chapter 2 of this thesis addresses the derivation of respiratory information from ECG signal. Several ECG derived respiration (EDR) methods have been presented in literature. Their performance usually decrease considerably in highly non-stationary and noisy environments such as stress test. However, some alternatives aimed to this kind of environments have been presented, such as one based on electrical axis rotation angles (obtained from the ECG), which to the best of our knowledge was the best suited for stress test. This method requires three orthogonal leads, and it is very dependent on each one of those leads, i.e., the performance of the method is significantly decreased if there is any problem at any one of the required leads. A novel EDR method based on QRS slopes and R-wave angle is presented in this thesis. The proposed method demonstrated to be robust in highly non-stationary and noisy environments and so to be applicable to exercise conditions including sports training. Furthermore, it is independent on a specific lead set, and so, a problem at any lead do not imply a significantly reduction of the performance. Chapter 3 addresses the derivation of respiratory information from PPG signals. A novel method for deriving respiratory rate from PPG signal is presented. It exploits respiration-related modulations in pulse width variability (PWV) which is related to pulse wave velocity and dispersion. The proposed method is much less affected by the sympathetic tone than other methods in literature which are usually based on pulses amplitude and/or rate. This leads to highest accuracy than other PPG-based method. Furthermore, a method for combining information from several respiratory signals was developed and used to obtain a respiratory rate estimation from the proposed PWV-based in combination with other known PPG-based methods, improving the accuracy of the estimation and outperforming other methods in literature which involve ECG or BP recording. Chapter 4 addresses the derivation of respiratory information from smartphone- camera-acquired-PPG (SCPPG) signals by adapting the methods for deriving respiratory rate from PPG signal presented in Chapter 3. The proposed method accurately estimates respiratory rate from SCPPG signals at its normal spontaneous ranges (0.2-0.4 Hz) and even at higher rates (up to 0.5 Hz or 0.6 Hz, depending on the used device). The only requirement is that these smartphones and tablets contain a flashlight and a video camera to image a fingertip pressed to it. As smartphones and tablets have become common, they meet the criteria of ready access and acceptance. Hence, a mobile phone/tablet approach has the potential to be widely-accepted by the general population and can facilitate the capability to measure some of the vital signs using only fingertip of the subject. Chapter 5 of this thesis proposes a methodology for obstructive sleep apnea syndrome (OSAS) screening in children just based on PPG signal. OSAS is a sleep-respiration-related dysfunction for which polysomnography (PSG) is the gold standard for diagnosis. PSG consists of overnight recording of many signals during sleep, therefore, it is quite involved and difficult to use in ambulatory scenario. The method presented in this thesis is aimed to diagnose the OSAS in children based just on PPG signal which would allow us to consider an ambulatory diagnosis with both its social and economic advantages. Finally, Chapter 6 summarizes the original contributions and main conclusions of the thesis, and proposes possible extensions of the work

    Smart Device for the Determination of Heart Rate Variability in Real Time

    Get PDF
    This work presents a first approach to the design, development, and implementation of a smart device for the real-time measurement and detection of alterations in heart rate variability (HRV). The smart device follows a modular design scheme, which consists of an electrocardiogram (ECG) signal acquisition module, a processing module and a wireless communications module. From five-minute ECG signals, the processing module algorithms perform a spectral estimation of the HRV. The experimental results demonstrate the viability of the smart device and the proposed processing algorithms.Fundación Pública Andaluza Progreso y Salud. Gobierno de Andalucía PI-0010-2013 y PI-0041-2014Ministerio de Economía y Competitividad (Instituto de Salud Carlos III) PI15 / 00306 y DTS15 / 00195CIBER-BBN INT-2-CAR

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Finger and forehead PPG signal comparison for respiratory rate estimation

    Get PDF
    Objective: an evaluation of the location of the photoplethysmogram (PPG) sensor for respiratory rate estimation is performed. Approach: finger-PPG, forehead-PPG, and respiratory signal were simultaneously recorded from 35 subjects while breathing spontaneously, and during controlled respiration experiments at a constant rate from 0.1 Hz to 0.6 Hz, in 0.1 Hz steps. Four PPG derived respiratory (PDR) signals were extracted from each one of the recorded PPG signals: pulse rate variability (PRV), pulse width variability (PWV), pulse amplitude variability (PAV) and the respiratory- induced intensity variability (RIIV). Respiratory rate was estimated from each one of the 4 PDR signals for both PPG sensor locations. In addition, different combinations of PDR signals, power distribution of the respiratory frequency range and differences of the morphological parameters extracted from both PPG signals have been analysed. Main results: results show a better performance in terms of successful estimation and relative error when: i) PPG signal is recorded in the finger; ii) the respiratory rate is less than 0.4 Hz; iii) RIIV signal is not considered. Furthermore, lower spectral power around the respiratory rate in the PDR signals recorded from the forehead was observed. Significance: these results suggest that respiratory rate estimation is better at lower rates (0.4 Hz and below) and that finger is better than forehead to estimate respiratory rate
    • …
    corecore