464 research outputs found

    A voting-based machine learning approach for classifying biological and clinical datasets.

    Get PDF
    BACKGROUND: Different machine learning techniques have been proposed to classify a wide range of biological/clinical data. Given the practicability of these approaches accordingly, various software packages have been also designed and developed. However, the existing methods suffer from several limitations such as overfitting on a specific dataset, ignoring the feature selection concept in the preprocessing step, and losing their performance on large-size datasets. To tackle the mentioned restrictions, in this study, we introduced a machine learning framework consisting of two main steps. First, our previously suggested optimization algorithm (Trader) was extended to select a near-optimal subset of features/genes. Second, a voting-based framework was proposed to classify the biological/clinical data with high accuracy. To evaluate the efficiency of the proposed method, it was applied to 13 biological/clinical datasets, and the outcomes were comprehensively compared with the prior methods. RESULTS: The results demonstrated that the Trader algorithm could select a near-optimal subset of features with a significant level of p-value \u3c 0.01 relative to the compared algorithms. Additionally, on the large-sie datasets, the proposed machine learning framework improved prior studies by ~ 10% in terms of the mean values associated with fivefold cross-validation of accuracy, precision, recall, specificity, and F-measure. CONCLUSION: Based on the obtained results, it can be concluded that a proper configuration of efficient algorithms and methods can increase the prediction power of machine learning approaches and help researchers in designing practical diagnosis health care systems and offering effective treatment plans

    Bibliometric of Feature Selection Using Optimization Techniques in Healthcare using Scopus and Web of Science Databases

    Get PDF
    Feature selection technique is an important step in the prediction and classification process, primarily in data mining related aspects or related to medical field. Feature selection is immersive with the errand of choosing a subset of applicable features that could be utilized in developing a prototype. Medical datasets are huge in size; hence some effective optimization techniques are required to produce accurate results. Optimization algorithms are a critical function in medical data mining particularly in identifying diseases since it offers excellent effectiveness in minimum computational expense and time. The classification algorithms also produce superior outcomes when an objective function is built using the feature selection algorithm. The solitary motive of the research paper analysis is to comprehend the reach and utility of optimization algorithms such as the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO) in the field of Health care. The aim is to bring efficiency and maximum optimization in the health care sector using the vast information that is already available related to these fields. With the help of data sets that are available in the health care analysis, our focus is to extract the most important features using optimization techniques and work on different algorithms so as to get the most optimized result. Precision largely depends on usefulness of features that are taken into consideration along with finding useful patterns in those features to characterize the main problem. The Performance of the optimized algorithm finds the overall optimum with less function evaluation. The principle target of this examination is to optimize feature selection technique to bring an optimized and efficient model to cater to various health issues. In this research paper, to do bibliometric analysis Scopus and Web of Science databases are used. This bibliometric analysis considers important keywords, datasets, significance of the considered research papers. It also gives details about types, sources of publications, yearly publication trends, significant countries from Scopus and Web of Science. Also, it captures details about co-appearing keywords, authors, source titles through networked diagrams. In a way, this research paper can be useful to researchers who want to contribute in the area of feature selection and optimization in healthcare. From this research paper it is observed that there is a lot scope for research for the considered research area. This kind of research will also be helpful for analyzing pandemic scenarios like COVID-19

    Affective e-learning approaches, technology and implementation model: a systematic review

    Get PDF
    A systematic literature study including articles from 2016 to 2022 was done to evaluate the various approaches, technologies, and implementation models involved in measuring student engagement during learning. The review’s objective was to compile and analyze all studies that investigated how instructors can gauge students’ mental states while teaching and assess the most effective teaching methods. Additionally, it aims to extract and assess expanded methodologies from chosen research publications to offer suggestions and answers to researchers and practitioners. Planning, carrying out the analysis, and publishing the results have all received significant attention in the research approach. The study’s findings indicate that more needs to be done to evaluate student participation objectively and follow their development for improved academic performance. Physiological approaches should be given more support among the alternatives. While deep learning implementation models and contactless technology should interest more researchers. And, the recommender system should be integrated into e-learning system. Other approaches, technologies, and methodology articles, on the other hand, lacked authenticity in conveying student feeling

    Medical disease prediction using Grey Wolf optimization and auto encoder based recurrent neural network

    Get PDF
    Big data development in biomedical and medical service networks provides a research on medical data benefits, early ailment detection, patient care and network administrations.e-Health applications are particularly important for the patients who are unfit to see a specialist or any health expert. The objective is to encourage clinicians and families to predict disease using Machine Learning (ML) procedures. In addition, diverse regions show important qualities of certain provincial ailments, which may hinder the forecast of disease outbreaks. The objective of this work is to predict the different kinds of diseases using Grey Wolf optimization and auto encoder based Recurrent Neural Network (GWO+RNN). The features are selected using GWO and the diseases are predicted by using RNN method. Initially the GWO algorithm avoids the irrelevant and redundant attributes significantly, after the features are forwarded to the RNN classifier. The experimental result proved that the performance of GWO+RNN algorithm achieved better than existing method like Group Search Optimizer and Fuzzy Min-Max Neural Network (GFMMNN) approach. The GWO-RNN method used the medical UCI database based on various datasets such as Hungarian, Cleveland, PID, mammographic masses, Switzerland and performance was measured with the help of efficient metrics like accuracy, sensitivity and specificity. The proposed GWO+RNN method achieved 16.82% of improved prediction accuracy for Cleveland dataset

    An enhanced stress indices in signal processing based on advanced mmatthew correlation coefficient (MCCA) and multimodal function using EEG signal

    Get PDF
    Stress is a response to various environmental, psychological, and social factors, resulting in strain and pressure on individuals. Categorizing stress levels is a common practise, often using low, medium, and high stress categories. However, the limitation of only three stress levels is a significant drawback of the existing approach. This study aims to address this limitation and proposes an improved method for EEG feature extraction and stress level categorization. The main contribution of this work lies in the enhanced stress level categorization, which expands from three to six levels using the newly established fractional scale based on the quantities' scale influenced by MCCA and multimodal equation performance. The concept of standard deviation (STD) helps in categorizing stress levels by dividing the scale of quantities, leading to an improvement in the process. The lack of performance in the Matthew Correlation Coefficient (MCC) equation is observed in relation to accuracy values. Also, multimodal is rarely discussed in terms of parameters. Therefore, the MCCA and multimodal function provide the advantage of significantly enhancing accuracy as a part of the study's contribution. This study introduces the concept of an Advanced Matthew Correlation Coefficient (MCCA) and applies the six-sigma framework to enhance accuracy in stress level categorization. The research focuses on expanding the stress levels from three to six, utilizing a new scale of fractional stress levels influenced by MCCA and multimodal equation performance. Furthermore, the study applies signal pre-processing techniques to filter and segregate the EEG signal into Delta, Theta, Alpha, and Beta frequency bands. Subsequently, feature extraction is conducted, resulting in twenty-one statistical and non-statistical features. These features are employed in both the MCCA and multimodal function analysis. The study employs the Support Vector Machine (SVM), Random Forest (RF), and k-Nearest Neighbour (k-NN) classifiers for stress level validation. After conducting experiments and performance evaluations, RF demonstrates the highest average accuracy of 85%–10% in 10-Fold and K-Fold techniques, outperforming SVM and k-NN. In conclusion, this study presents an improved approach to stress level categorization and EEG feature extraction. The proposed Advanced Matthew Correlation Coefficient (MCCA) and six-sigma framework contribute to achieving higher accuracy, surpassing the limitations of the existing three-level categorization. The results indicate the superiority of the Random Forest classifier over SVM and k-NN. This research has implications for various applications and fields, providing a more effective equation to accurately categorize stress levels with a potential accuracy exceeding 95%

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others
    • …
    corecore