8 research outputs found

    Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    Full text link
    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel multi-core data processing as it was deemed inferior to hash joins. We devise a suite of new massively parallel sort-merge (MPSM) join algorithms that are based on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM algorithms do not rely on a hard to parallelize final merge step to create one complete sort order. Rather they work on the independently created runs in parallel. This way our MPSM algorithms are NUMA-affine as all the sorting is carried out on local memory partitions. An extensive experimental evaluation on a modern 32-core machine with one TB of main memory proves the competitive performance of MPSM on large main memory databases with billions of objects. It scales (almost) linearly in the number of employed cores and clearly outperforms competing hash join proposals - in particular it outperforms the "cutting-edge" Vectorwise parallel query engine by a factor of four.Comment: VLDB201

    Smooth heaps and a dual view of self-adjusting data structures

    Full text link
    We present a new connection between self-adjusting binary search trees (BSTs) and heaps, two fundamental, extensively studied, and practically relevant families of data structures. Roughly speaking, we map an arbitrary heap algorithm within a natural model, to a corresponding BST algorithm with the same cost on a dual sequence of operations (i.e. the same sequence with the roles of time and key-space switched). This is the first general transformation between the two families of data structures. There is a rich theory of dynamic optimality for BSTs (i.e. the theory of competitiveness between BST algorithms). The lack of an analogous theory for heaps has been noted in the literature. Through our connection, we transfer all instance-specific lower bounds known for BSTs to a general model of heaps, initiating a theory of dynamic optimality for heaps. On the algorithmic side, we obtain a new, simple and efficient heap algorithm, which we call the smooth heap. We show the smooth heap to be the heap-counterpart of Greedy, the BST algorithm with the strongest proven and conjectured properties from the literature, widely believed to be instance-optimal. Assuming the optimality of Greedy, the smooth heap is also optimal within our model of heap algorithms. As corollaries of results known for Greedy, we obtain instance-specific upper bounds for the smooth heap, with applications in adaptive sorting. Intriguingly, the smooth heap, although derived from a non-practical BST algorithm, is simple and easy to implement (e.g. it stores no auxiliary data besides the keys and tree pointers). It can be seen as a variation on the popular pairing heap data structure, extending it with a "power-of-two-choices" type of heuristic.Comment: Presented at STOC 2018, light revision, additional figure

    Improved Cross-Linking Mass Spectrometry Algorithms for Probing Protein Structures and Interactions

    Get PDF
    Proteins are the most active molecules in living bodies. They catalyze chemical reactions, provide structural support for cells and allow organisms to move. Their function is intrinsically linked to their folded structure. Resolving the structures of proteins and protein complexes is crucial for our understanding of basic biological processes and diseases. Cross-Linking Mass Spectrometry (XL-MS) is a method to gain structural insights into protein complexes. The field of XL-MS data analysis software is not yet as established as many other methods in proteomics. XL-MS analysis software has significant room for improvement in terms of sensitivity, efficiency and standardization of file formats and workflows to facilitate interoperability and reproducibility. In this thesis we present a new XL-MS search engine, OpenPepXL. We develop an algorithm that scores all candidate cross-linked peptide pairs and is efficient enough to be used on a standard desktop PC for most applications. OpenPepXL supports the standardized XL-MS identification file format defined as a part of the MzIdentML 1.2 specifications that were developed in collaboration with the Proteomics Standards Initiative. We benchmark OpenPepXL against other state-of-the-art XL-MS identification tools on multiple datasets that allow cross-link validation through structures or other means. We show that our exhaustive approach, although not the quickest one, is superior in sensitivity to other tools. We suggest this is due to some tools improving their processing time by discarding too many candidates in early steps of the data analysis. We apply XL-MS analysis with OpenPepXL to multiple protein complexes related to meiosis and the type III secretion system. The first project involved several proteins with unknown structures, some of which are expected to be at least partially intrinsically disordered and therefore difficult to investigate using most traditional structural research methods. Unfortunately, we could not find cross-links between the interaction sites we were interested in the most, but we were able to identify many others in these complexes and gained some structural insights. In the second project we used the photo-cross-linking amino acid pBpa to test very specific hypotheses about interactions within the type III secretion system. We were not able to gain any new structural information yet. However, we could confirm that this is a viable approach. It is possible to identify cross-links between a pBpa residue incorporated into a protein sequence and a residue it cross-links to on a residue level resolution

    Implementation of a vectorized Quicksort using AVX-512 intrinsics

    Get PDF
    Jahrzehntelang wurden Verbesserungen der Rechengeschwindigkeit erreicht, indem die Taktfrequenz der CPU erhöht wurde. Im Laufe der letzten Jahre wurde dieser Mechanismus durch physikalische Einflüsse gebremst. Daher müssen moderne Single-Thread-Anwendungen stärker CPU-Funktionen ausnutzen, um von den Fortschritten neuer Prozessorgenerationen zu profitieren. Eine dieser Funktionen ist die Vektorverarbeitung, um mehrere Datenelemente gleichzeitig zu verarbeiten. Diese Arbeit untersucht die Verwendung von AVX-512-Befehlen zur Sortierung von primitiven Typen der Länge 32 bit. Die Nutzung von Vektorinstruktionen für die Sortierung ist eine Herausforderung, da Sortieralgorithmen erst vektorisierungsfreundlich umgestaltet werden müssen. Glücklicherweise hat Mark Blacher einen effizienten vektorisierten Sortieralgorithmus auf Basis von Sortiernetzwerken und einem nichtquadratischen Quicksort entwickelt. In dieser Arbeit wird Blachers AVX2-basierte vektorisierte Implementierung auf den moderneren AVX-512-Befehlssatz portiert. Im Geschwindigkeitsvergleich schlägt Blachers AVX2-Version die in dieser Arbeit entwickelte AVX-512-Implementierung. Diese ist jedoch in der Lage, den bisherigen AVX-512-Sortieralgorithmus von Bramas zu übertreffen

    Robust Scalable Sorting

    Get PDF
    Sortieren ist eines der wichtigsten algorithmischen Grundlagenprobleme. Es ist daher nicht verwunderlich, dass Sortieralgorithmen in einer Vielzahl von Anwendungen benötigt werden. Diese Anwendungen werden auf den unterschiedlichsten Geräten ausgeführt -- angefangen bei Smartphones mit leistungseffizienten Multi-Core-Prozessoren bis hin zu Supercomputern mit Tausenden von Maschinen, die über ein Hochleistungsnetzwerk miteinander verbunden sind. Spätestens seitdem die Single-Core-Leistung nicht mehr signifikant steigt, sind parallele Anwendungen in unserem Alltag nicht mehr wegzudenken. Daher sind effiziente und skalierbare Algorithmen essentiell, um diese immense Verfügbarkeit von (paralleler) Rechenleistung auszunutzen. Diese Arbeit befasst sich damit, wie sequentielle und parallele Sortieralgorithmen auf möglichst robuste Art maximale Leistung erzielen können. Dabei betrachten wir einen großen Parameterbereich von Eingabegrößen, Eingabeverteilungen, Maschinen sowie Datentypen. Im ersten Teil dieser Arbeit untersuchen wir sowohl sequentielles Sortieren als auch paralleles Sortieren auf Shared-Memory-Maschinen. Wir präsentieren In-place Parallel Super Scalar Samplesort (IPS⁴o), einen neuen vergleichsbasierten Algorithmus, der mit beschränkt viel Zusatzspeicher auskommt (die sogenannte „in-place” Eigenschaft). Eine wesentliche Erkenntnis ist, dass unsere in-place-Technik die Sortiergeschwindigkeit von IPS⁴o im Vergleich zu ähnlichen Algorithmen ohne in-place-Eigenschaft verbessert. Bisher wurde die Eigenschaft, mit beschränkt viel Zusatzspeicher auszukommen, eher mit Leistungseinbußen verbunden. IPS⁴o ist außerdem cache-effizient und führt O(n/tlogn)O(n/t\log n) Arbeitsschritte pro Thread aus, um ein Array der Größe nn mit tt Threads zu sortieren. Zusätzlich berücksichtigt IPS⁴o Speicherlokalität, nutzt einen Entscheidungsbaum ohne Sprungvorhersagen und verwendet spezielle Partitionen für Elemente mit gleichem Schlüssel. Für den Spezialfall, dass ausschließlich ganzzahlige Schlüssel sortiert werden sollen, haben wir das algorithmische Konzept von IPS⁴o wiederverwendet, um In-place Parallel Super Scalar Radix Sort (IPS²Ra) zu implementieren. Wir bestätigen die Performance unserer Algorithmen in einer umfangreichen experimentellen Studie mit 21 State-of-the-Art-Sortieralgorithmen, sechs Datentypen, zehn Eingabeverteilungen, vier Maschinen, vier Speicherzuordnungsstrategien und Eingabegrößen, die über sieben Größenordnungen variieren. Einerseits zeigt die Studie die robuste Leistungsfähigkeit unserer Algorithmen. Andererseits deckt sie auf, dass viele konkurrierende Algorithmen Performance-Probleme haben: Mit IPS⁴o erhalten wir einen robusten vergleichsbasierten Sortieralgorithmus, der andere parallele in-place vergleichsbasierte Sortieralgorithmen fast um den Faktor drei übertrifft. In der überwiegenden Mehrheit der Fälle ist IPS⁴o der schnellste vergleichsbasierte Algorithmus. Dabei ist es nicht von Bedeutung, ob wir IPS⁴o mit Algorithmen vergleichen, die mit beschränkt viel Zusatzspeicher auskommen, Zusatzspeicher in der Größenordnung der Eingabe benötigen, und parallel oder sequentiell ausgeführt werden. IPS⁴o übertrifft in vielen Fällen sogar konkurrierende Implementierungen von Integer-Sortieralgorithmen. Die verbleibenden Fälle umfassen hauptsächlich gleichmäßig verteilte Eingaben und Eingaben mit Schlüsseln, die nur wenige Bits enthalten. Diese Eingaben sind in der Regel „einfach” für Integer-Sortieralgorithmen. Unser Integer-Sorter IPS²Ra übertrifft andere Integer-Sortieralgorithmen für diese Eingaben in der überwiegenden Mehrheit der Fälle. Ausnahmen sind einige sehr kleine Eingaben, für die die meisten Algorithmen sehr ineffizient sind. Allerdings sind Algorithmen, die auf diese Eingabegrößen abzielen, in der Regel für alle anderen Eingaben deutlich langsamer. Im zweiten Teil dieser Arbeit untersuchen wir skalierbare Sortieralgorithmen für verteilte Systeme, welche robust in Hinblick auf die Eingabegröße, häufig vorkommende Sortierschlüssel, die Verteilung der Sortierschlüssel auf die Prozessoren und die Anzahl an Prozessoren sind. Das Resultat unserer Arbeit sind im Wesentlichen vier robuste skalierbare Sortieralgorithmen, mit denen wir den gesamten Bereich an Eingabegrößen abdecken können. Drei dieser vier Algorithmen sind neue, schnelle Algorithmen, welche so implementiert sind, dass sie nur einen geringen Zusatzaufwand benötigen und gleichzeitig unabhängig von „schwierigen” Eingaben robust skalieren. Es handelt sich z.B. um „schwierige” Eingaben, wenn viele gleiche Elemente vorkommen oder die Eingabeelemente in Hinblick auf ihre Sortierschlüssel ungünstig auf die Prozessoren verteilt sind. Bisherige Algorithmen für mittlere und größere Eingabegrößen weisen ein unzumutbar großes Kommunikationsvolumen auf oder tauschen unverhältnismäßig oft Nachrichten aus. Für diese Eingabegrößen beschreiben wir eine robuste, mehrstufige Verallgemeinerung von Samplesort, die einen brauchbaren Kompromiss zwischen dem Kommunikationsvolumen und der Anzahl ausgetauschter Nachrichten darstellt. Wir überwinden diese bisher unvereinbaren Ziele mittels einer skalierbaren approximativen Splitterauswahl sowie eines neuen Datenumverteilungsalgorithmus. Als eine Alternative stellen wir eine Verallgemeinerung von Mergesort vor, welche den Vorteil von perfekt ausbalancierter Ausgabe hat. Für kleine Eingaben entwerfen wir eine Variante von Quicksort. Mit wenig Zusatzaufwand vermeidet sie das Problem ungünstiger Elementverteilungen und häufig vorkommender Sortierschlüssel, indem sie schnell qualitativ hochwertige Splitter auswählt, die Elemente zufällig den Prozessoren zuweist und einer Duplikat-Behandlung unterzieht. Bisherige praktische Ansätze mit polylogarithmischer Latenz haben entweder einen logarithmischen Faktor mehr Kommunikationsvolumen oder berücksichtigen nur gleichverteilte Eingaben ohne mehrfach vorkommende Sortierschlüssel. Für sehr kleine Eingaben schlagen wir einen einfachen sowie schnellen, jedoch arbeitsineffizienten Algorithmus mit logarithmischer Latenzzeit vor. Für diese Eingaben sind bisherige effiziente Ansätze nur theoretische Algorithmen, die meist unverhältnismäßig große konstante Faktoren haben. Für die kleinsten Eingaben empfehlen wir die Daten zu sortieren, während sie an einen einzelnen Prozessor geschickt werden. Ein wichtiger Beitrag dieser Arbeit zu der praktischen Seite von Algorithm Engineering ist die Kommunikationsbibliothek RangeBasedComm (RBC). Mit RBC ermöglichen wir eine effiziente Umsetzung von rekursiven Algorithmen mit sublinearer Laufzeit, indem sie skalierbare und effiziente Kommunikationsfunktionen für Teilmengen von Prozessoren bereitstellt. Zuletzt präsentieren wir eine umfangreiche experimentelle Studie auf zwei Supercomputern mit bis zu 262144 Prozessorkernen, elf Algorithmen, zehn Eingabeverteilungen und Eingabegrößen variierend über neun Größenordnungen. Mit Ausnahme von den größten Eingabegrößen ist diese Arbeit die einzige, die überhaupt Sortierexperimente auf Maschinen dieser Größe durchführt. Die RBC-Bibliothek beschleunigt die Algorithmen teilweise drastisch – einen konkurrierenden Algorithmus sogar um mehr als zwei Größenordnungen. Die Studie legt dar, dass unsere Algorithmen robust sind und gleichzeitig konkurrierende Implementierungen leistungsmäßig deutlich übertreffen. Die Konkurrenten, die man normalerweise betrachtet hätte, stürzen bei „schwierigen” Eingaben sogar ab

    Algorithm Libraries for Multi-Core Processors

    Get PDF
    By providing parallelized versions of established algorithm libraries, we ease the exploitation of the multiple cores on modern processors for the programmer. The Multi-Core STL provides basic algorithms for internal memory, while the parallelized STXXL enables multi-core acceleration for algorithms on large data sets stored on disk. Some parallelized geometric algorithms are introduced into CGAL. Further, we design and implement sorting algorithms for huge data in distributed external memory

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore