5,877 research outputs found

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    Wireless Health Monitoring using Passive WiFi Sensing

    Full text link
    This paper presents a two-dimensional phase extraction system using passive WiFi sensing to monitor three basic elderly care activities including breathing rate, essential tremor and falls. Specifically, a WiFi signal is acquired through two channels where the first channel is the reference one, whereas the other signal is acquired by a passive receiver after reflection from the human target. Using signal processing of cross-ambiguity function, various features in the signal are extracted. The entire implementations are performed using software defined radios having directional antennas. We report the accuracy of our system in different conditions and environments and show that breathing rate can be measured with an accuracy of 87% when there are no obstacles. We also show a 98% accuracy in detecting falls and 93% accuracy in classifying tremor. The results indicate that passive WiFi systems show great promise in replacing typical invasive health devices as standard tools for health care.Comment: 6 pages, 8 figures, conference pape

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Flexible and scalable software defined radio based testbed for large scale body movement

    Get PDF
    Human activity (HA) sensing is becoming one of the key component in future healthcare system. The prevailing detection techniques for IHA uses ambient sensors, cameras and wearable devices that primarily require strenuous deployment overheads and raise privacy concerns as well. This paper proposes a novel, non-invasive, easily-deployable, flexible and scalable test-bed for identifying large-scale body movements based on Software Defined Radios (SDRs). Two Universal Software Radio Peripheral (USRP) models, working as SDR based transceivers, are used to extract the Channel State Information (CSI) from continuous stream of multiple frequency subcarriers. The variances of amplitude information obtained from CSI data stream are used to infer daily life activities. Different machine learning algorithms namely K-Nearest Neighbour, Decision Tree, Discriminant Analysis and Naïve Bayes are used to evaluate the overall performance of the test-bed. The training, validation and testing processes are performed by considering the time-domain statistical features obtained from CSI data. The K-nearest neighbour outperformed all aforementioned classifiers, providing an accuracy of 89.73%. This preliminary non-invasive work will open a new direction for design of scalable framework for future healthcare systems

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    A novel monitoring system for fall detection in older people

    Get PDF
    Indexación: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC-03: ‘‘MONITORing for ehealth," FONDEF ID16I10449 ‘‘Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público’’, and in part by MEC80170097 ‘‘Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso’’. The work of V. H. C. De Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq), under Grant 304315/2017-6.Each year, more than 30% of people over 65 years-old suffer some fall. Unfortunately, this can generate physical and psychological damage, especially if they live alone and they are unable to get help. In this field, several studies have been performed aiming to alert potential falls of the older people by using different types of sensors and algorithms. In this paper, we present a novel non-invasive monitoring system for fall detection in older people who live alone. Our proposal is using very-low-resolution thermal sensors for classifying a fall and then alerting to the care staff. Also, we analyze the performance of three recurrent neural networks for fall detections: Long short-term memory (LSTM), gated recurrent unit, and Bi-LSTM. As many learning algorithms, we have performed a training phase using different test subjects. After several tests, we can observe that the Bi-LSTM approach overcome the others techniques reaching a 93% of accuracy in fall detection. We believe that the bidirectional way of the Bi-LSTM algorithm gives excellent results because the use of their data is influenced by prior and new information, which compares to LSTM and GRU. Information obtained using this system did not compromise the user's privacy, which constitutes an additional advantage of this alternative. © 2013 IEEE.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=842305

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    • …
    corecore