24,742 research outputs found

    Visual cue training to improve walking and turning after stroke:a study protocol for a multi-centre, single blind randomised pilot trial

    Get PDF
    Visual information comprises one of the most salient sources of information used to control walking and the dependence on vision to maintain dynamic stability increases following a stroke. We hypothesize, therefore, that rehabilitation efforts incorporating visual cues may be effective in triggering recovery and adaptability of gait following stroke. This feasibility trial aims to estimate probable recruitment rate, effect size, treatment adherence and response to gait training with visual cues in contrast to conventional overground walking practice following stroke.Methods/design: A 3-arm, parallel group, multi-centre, single blind, randomised control feasibility trial will compare overground visual cue training (O-VCT), treadmill visual cue training (T-VCT), and usual care (UC). Participants (n = 60) will be randomly assigned to one of three treatments by a central randomisation centre using computer generated tables to allocate treatment groups. The research assessor will remain blind to allocation. Treatment, delivered by physiotherapists, will be twice weekly for 8 weeks at participating outpatient hospital sites for the O-VCT or UC and in a University setting for T-VCT participants.Individuals with gait impairment due to stroke, with restricted community ambulation (gait spee

    Does cueing training improve physical activity in patients with Parkinson's disease?

    Get PDF
    Patients with Parkinson’s disease (PD) are encouraged to stay active to maintain their mobility. Ambulatory activity monitoring (AM) provides an objective way to determine type and amount of gait-related daily activities. Objective To investigate the effects of a home cueing training program on functional walking activity in PD. Methods In a single-blind, randomized crossover trial, PD patients allocated to early intervention received cueing training for 3 weeks, whereas the late intervention group received training in the following 3 weeks. Training was applied at home, using a prototype cueing device. AM was applied at baseline, 3, 6, and 12 weeks in the patient’s home, to record body movements. Postures and motions were classified as percentage of total time spent on (a) static activity, further specified as % sitting and % standing, and (b) % dynamic activity, further specified as % walking, % walking periods exceeding 5 seconds (W>5s) and 10 seconds (W>10s). Random coefficient analysis was applied. Results A total of 153 patients participated in this trial. Significant improvements were found for dynamic activity ( = 4.46; P 5s ( = 2.63; P 10s ( = 2.90; P < .01). All intervention effects declined significantly at 6 weeks follow-up. Conclusion Cueing training in PD patients’ own home significantly improves the amount of walking as recorded by AM. Treatment effects reduced after the intervention period, pointing to the need for permanent cueing devices and follow-up cueing training

    Best practice statement : use of ankle-foot orthoses following stroke

    Get PDF
    NHS Quality Improvement Scotland (NHSQIS) leads the use of knowledge to promote improvement in the quality of health care for the people of Scotland and performs three key functions. It provides advice and guidance on effective clinical practice, including setting standards; drives and supports implementation of improvements in quality, and assessing the performance of the NHS, reporting and publishing findings

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Wearable sensors system for an improved analysis of freezing of gait in Parkinson's disease using electromyography and inertial signals

    Get PDF
    We propose a wearable sensor system for automatic, continuous and ubiquitous analysis of Freezing of Gait (FOG), in patients affected by Parkinson's disease. FOG is an unpredictable gait disorder with different clinical manifestations, as the trembling and the shuffling-like phenotypes, whose underlying pathophysiology is not fully understood yet. Typical trembling-like subtype features are lack of postural adaptation and abrupt trunk inclination, which in general can increase the fall probability. The targets of this work are detecting the FOG episodes, distinguishing the phenotype and analyzing the muscle activity during and outside FOG, toward a deeper insight in the disorder pathophysiology and the assessment of the fall risk associated to the FOG subtype. To this aim, gyroscopes and surface electromyography integrated in wearable devices sense simultaneously movements and action potentials of antagonist leg muscles. Dedicated algorithms allow the timely detection of the FOG episode and, for the first time, the automatic distinction of the FOG phenotypes, which can enable associating a fall risk to the subtype. Thanks to the possibility of detecting muscles contractions and stretching exactly during FOG, a deeper insight into the pathophysiological underpinnings of the different phenotypes can be achieved, which is an innovative approach with respect to the state of art

    Smart Footwear Insole for Recognition of Foot Pronation and Supination Using Neural Networks

    Get PDF
    Abnormal foot postures during gait are common sources of pain and pathologies of the lower limbs. Measurements of foot plantar pressures in both dynamic and static conditions can detect these abnormal foot postures and prevent possible pathologies. In this work, a plantar pressure measurement system is developed to identify areas with higher or lower pressure load. This system is composed of an embedded system placed in the insole and a user application. The instrumented insole consists of a low-power microcontroller, seven pressure sensors and a low-energy bluetooth module. The user application receives and shows the insole pressure information in real-time and, finally, provides information about the foot posture. In order to identify the different pressure states and obtain the final information of the study with greater accuracy, a Deep Learning neural network system has been integrated into the user application. The neural network can be trained using a stored dataset in order to obtain the classification results in real-time. Results prove that this system provides an accuracy over 90% using a training dataset of 3000+ steps from 6 different users.Ministerio de EconomĂ­a y Competitividad TEC2016-77785-

    Effects of hemodialysis therapy on sit-to-walk characteristics in end stage renal disease patients

    Get PDF
    Patients with end stage renal diseases (ESRD) undergoing hemodialysis (HD) have high morbidity and mortality due to multiple causes; one of which is dramatically higher fall rates than the general population. In spite of the multiple efforts aiming to decrease the high mortality and improve quality of life in ESRD patients, limited success has been achieved. If adequate interventions for fall prevention are to be achieved, the functional and mobility mechanisms consistent with falls in this population must be understood. Human movements such as sit-to-walk (STW) tasks are clinically significant, and analysis of these movements provides a meaningful evaluation of postural and locomotor performance in elderly patients with functional limitations indicative of fall risks. In order to assess the effects of HD therapy on fall risks, 22 sessions of both pre- and post-HD measurements were obtained in six ESRD patients utilizing customized inertial measurement units (IMU). IMU signals were denoised using ensemble empirical mode decomposition and Savistky-Golay filtering methods to detect relevant events for identification of STW phases. The results indicated that patients were slower to get out of the chair (as measured by trunk flexion angular accelerations, time to peak trunk flexion, and overall STW completion time) following the dialysis therapy session. STW is a frequent movement in activities of daily living, and HD therapy may influence the postural and locomotor control of these movements. The analysis of STW movement may assist in not only assessing a patient's physical status, but in identifying HD-related fall risk as well. This preliminary study presents a non-invasive method of kinematic measurement for early detection of increased fall risk in ESRD patients using portable inertial sensors for out-patient monitoring. This can be helpful in understanding the pathogenesis better, and improve awareness in health care providers in targeting interventions to identify individuals at risk for fall
    • 

    corecore