28 research outputs found

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it

    Modified serpentine motion of the snake robot

    Get PDF
    The frequent occurrence of earthquake in New Zealand drives the research on snake robot for search and rescue operation because of its elongated body shape and locomotion mimicry of the biological snake. Both features are in favour of moving the snake robot through the earthquake disaster area. To facilitate the robot control and information gathering, it is usually required to install a camera on the snake robot head so that the video images of the disaster area can be send back to the human operator. This thesis presents the simulation of a snake robot performing serpentine motion. A camera is attached on the snake robot head to obtain the video image along the line of sight. A remote controller is incorporated to control the advancement based on the video images. This simulation reveals that the video images from the camera oscillate seriously because the camera on the snake robot head follows serpenoid curve during the locomotion. As a result, both robot control and information gathering are affected. A solution is proposed to stabilize the snake robot head and its camera by introducing a correction at the joint between the robot head and its body. This correction aligns the camera sight direction with the moving direction of the snake robot to yield satisfactory video images. Finally, an actual snake robot is implemented with a wireless camera installed on the head to show the effect of correction. Experiments are conducted to control the advancement of snake robot remotely just based on the video images obtained from the camera. This greatly improves the performance of the snake robot

    Analysis and Experiments for Tendril-Type Robots

    Get PDF
    New models for the Tendril continuous backbone robot, and other similarly constructed robots, are introduced and expanded upon in this thesis. The ability of the application of geometric models to result in more precise control of the Tendril manipulator is evaluated on a Tendril prototype. We examine key issues underlying the design and operation of \u27soft\u27 robots featuring continuous body (\u27continuum\u27) elements. Inspiration from nature is used to develop new methods of operation for continuum robots. These new methods of operation are tested in experiments to evaluate their effectiveness and potential

    Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    Get PDF
    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.National Science Foundation (U.S.) (NSF IIS1226883)National Science Foundation (U.S.) (NSF CCF1138967)National Science Foundation (U.S.) (1122374

    生物模倣ソフト魚ロボットの研究開発

    Get PDF
    In nature, the environment varies from day to day. Through natural selection and competition law of survival of the fittest, the winning creatures survive and their species are able to retain and persist in nature. Based on this fact, creatures existent in nature have their unique features and advantages adapt to the surrounding environment. In recent years, many researches focused on the features of the creatures in nature have been done actively to clarify their morphology and functions and apply the morphology and functions to various fields. Among these researches, the development of the biomimetic robots based on mimicking the creature’s structures and functions has become an active field in robotics recently. In the research, the development of biomimetic robotic fish is focused. So far, there are many researches on biomimetic robotic fish, but improvement on motion performances and efficiency is still an important issue for robot development. Specially, on the biomimetic soft robotic fish utilizing the flexibility of fishes, the developments have been done by the trial and error approach. That is, the design and control method of soft robotic fish has not been established currently. Therefore, it motives us to investigate the design and control of soft robotic fish by numerical simulation that takes into account the interaction between flexible structure and surrounding fluid to develop the biomimetic soft robotic fish with high performance. In order to develop the biomimetic soft robotic fish with high performance, the basic design method and corresponding numerical simulation system are firstly proposed and constructed in this dissertation. Then, based on finite element method (FEM), modelling of soft robotic fish by mimicking the soft structure and driving mechanism of fishes is carried out. The propulsion motion and propulsive force of the soft robotic fish are investigated through two kinds of numerical analyses. One is the modal and transient analysis considering the surrounding fluid as acoustic fluid. The propulsion mode and amplitude of the propulsion motion of soft robotic fish corresponding directly to the propulsion mechanism and motion performance of the robotic fish can be investigated. The other is the fluid-structure interaction (FSI) analysis. The interaction between soft robot structure and surrounding fluid including the dissipation due to fluid viscosity and influence of wake performance around the soft robotic fish are taken into account. From FSI analysis, the hydrodynamic performances of the soft robotic fish can be obtained for investigating its propulsion motion. It is possible to further improve the performance of the soft robotic fish through its design and control based on FSI analysis. Besides, based on coupling analysis by using acoustic fluid, the turning motion control of the soft robotic fish is investigated by its propulsion modes in the fluid. In order to investigate the feasibility of modelling method and numerical simulation analysis on design and control of the biomimetic soft robotic fish, the performance evaluation is carried out by comparison between the simulation and experiment on an actual prototype. Finally, the optimization and improvement are performed for developing the biomimetic soft robotic fish with higher performance based on verified coupling analysis considering the fluid as acoustic fluid, and corresponding performance evaluation on new robot prototype is presented. The performance improvement of the soft robotic fish is confirmed through the new robot prototype. The dissertation consists of six chapters and the main contents are shown as follows. Chapter 1 is an introduction. The background and relative previous work about biomimetic soft robotic fish are briefly reviewed. It summarizes the current research status and problems of biomimetic soft robotic fish, and describes the purposes of this research. Chapter 2 presents the design method, procedures and numerical simulation system in the present research for developing the biomimetic soft robotic fish with high performance. Different from previous development method, our purpose is how to design and control the soft robotic fish by utilizing interaction between the flexible structure and surrounding fluid effectively based on numerical simulations. Therefore, it is necessary to model a fish-like soft robot structure including soft actuators and an enclosed fluid. Besides, by the numerical analysis considering the interaction between flexible structure and fluid, the fish-like propulsion motion should be realized and established, and then the robot structure and control inputs are needed to be optimized for performance improvement. In order to meet these requirements of designing and developing the optimal soft robotic fish, the design method based on modelling, simulation analysis and improvement is presented and the numerical simulation system for soft robotic fish is built. In the simulation system, modelling of soft robotic fish, modal and transient analysis considering the enclosed fluid as acoustic fluid are firstly described based on FEM to realize the fish-like propulsion motion with large amplitude for the soft robotic fish. Then, the FSI analysis is performed to describe and establish the hydrodynamic performances of the soft robotic fish. Based on this numerical simulation system, it is possible to develop the biomimetic soft robotic fish with high performance effectively by optimization of design and control of the soft robotic fish. Chapter 3 describes the modelling and numerical analysis of biomimetic soft robotic fish by using the method presented in Chapter 2. The soft robotic fish uses the piezoelectric fiber composite (PFC) as soft actuator. Firstly, the relationships between the input voltage and generated stress of the PFC are derived. The generated stress can be applied on soft structure to investigate the motion performance of the soft robotic fish. To support the driving model of the PFC, the corresponding experiments on simple beam model are carried out. By comparing the simulation results with experimental results, the effectiveness of the driving model is verified. Then, the modal analysis in which the fluid is considered as acoustic fluid is performed. The structural mode frequencies and mode shapes of the soft robotic fish in the fluid are calculated. By comparing these modes’ motion with those of the real fishes, the fish-like propulsion mode is identified to realize the corresponding propulsion motion of the soft robotic fish. Furthermore, based on the verified driving model of soft actuator, the amplitude of the main propulsion motion of soft robotic fish is calculated. Through FSI analysis, the relationships of driving frequencies of input signal with propulsive force and displacement of propulsion motion, and vortex distribution in the wake around the soft robotic fish are investigated for the case of fixing robot head. Besides, the motion control of soft robot is investigated to realize turning motion in the fluid. Through controlling the input voltage amplitude on soft actuators of the robot, turning right and turning left motion are identified in the swimming when the input voltage amplitudes on two actuators are in asymmetric distribution. Chapter 4 is experiment evaluation. In order to validate the results of numerical simulation analysis described in Chapter 3, the mode shapes, amplitude of propulsion motion, propulsive force and vortex distribution around soft robotic fish for the case of fixing robot head, and turning motion are measured by using actual robot prototype. The present simulation results are congruent with experiments. By the results, the effectiveness of the modelling method and numerical analysis used in the research is verified and they are useful to predict the propulsion characteristics of the soft robotic fish in the fluid for performance improvement. Chapter 5 develops a new soft robotic fish with high performance based on above modelling method and numerical analysis by optimization. Firstly, the structural parameters of the robot are allowed to vary within a range and the amplitude of the propulsion motion for the soft robot is calculated for different parameters by the numerical analysis. Then the structural parameters of the robot capable of propulsion motion with largeramplitude are chosen for improvement. Based on this result, new soft robot is designed and evaluated by experiments. From the experimental results of the new soft robot, it is confirmed that the higher swimming speed, better fish-like swimming performance and larger turning velocity are realized. It can be said that the new soft robotic fish has been developed successfully for improvement. Chapter 6 summarizes the conclusions and future works of this research.電気通信大学201

    Fast Dynamics of a three dimensional eel-like robot: comparisons with Navier-Stokes simulations

    Get PDF
    International audienceThis article proposes a dynamic model of the swim of elongated ﰣshes suited to the on-line control of bio-mimetic eel-like robots. The approach is analytic and can be considered as an extension of the original reactive "Large-Elongated-Body-Theory" of Lighthill to the three dimensional self propulsion augmented of a resistive empirical model. While all the mathematical fundamentals are detailed in [1], this article essentially focuses on the numerical validation and calibration of the model and the study of swimming gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the ﰣsh head and the ﰣeld of internal control torque from the knowledge of the imposed internal strain ﰣelds. Based on the Newton-Euler formalism of robots dynamics, this algorithm works faster than real time. As far as precision is concerned, many tests obtained with several planar and three dimensional gaits are reported and compared (in the planar case) with a Navier-Stokes solver, devoted until today to the planar swim. The comparisons obtained are very encouraging since in all the cases we tested, the diﰢerences between our simpliﰣed and reference simulations do not exceed ten per cent

    Non-inertial Undulatory Locomotion Across Scales

    Get PDF
    Locomotion is crucial to behaviors such as predator avoidance, foraging, and mating. In particular, undulatory locomotion is one of the most common forms of locomotion. From microscopic flagellates to swimming fish and slithering snakes, this form of locomotion is a remarkably robust self-propulsion strategy that allows a diversity of organisms to navigate myriad environments. While often thought of as exclusive to limbless organisms, a variety of locomotors possessing few to many appendages rely on waves of undulation for locomotion. In inertial regimes, organisms can leverage the forces generated by their body and the surrounding medium's inertia to enhance their locomotion (e.g., coast or glide). On the other hand, in non-inertial regimes self-propulsion is dominated by damping (viscous or frictional), and thus the ability for organisms to generate motion is dependent on the sequence of internal shape changes. In this thesis, we study a variety of undulating systems that locomote in highly damped regimes. We perform studies on systems ranging from zero to many appendages. Specifically, we focus on four distinct undulatory systems: 1) C. elegans, 2) quadriflagellate algae (bearing four flagella), 3) centipedes on terrestrial environments, and 4) centipedes on fluid environments. For each of these systems, we study how the coordination of their many degrees of freedom leads to specific locomotive behaviors. Further, we propose hypotheses for the observed behaviors in the context of each of these system's ecology.Ph.D

    Modeling, Control and Energy Efficiency of Underwater Snake Robots

    Get PDF
    This thesis is mainly motivated by the attribute of the snake robots that they are able to move over land as well as underwater while the physiology of the robot remains the same. This adaptability to different motion demands depending on the environment is one of the main characteristics of the snake robots. In particular, this thesis targets several interesting aspects regarding the modeling, control and energy efficiency of the underwater snake robots. This thesis addresses the problem of modeling the hydrodynamic effects with an analytical perspective and a primary objective to conclude in a closed-form solution for the dynamic model of an underwater snake robot. Two mathematical models of the kinematics and dynamics of underwater snake robots swimming in virtual horizontal and vertical planes aimed at control design are presented. The presented models are derived in a closed-form and can be utilized in modern modelbased control schemes. In addition, these proposed models comprise snake robots moving both on land and in water which makes the model applicable for unified control methods for amphibious snake robots moving both on land and in water. The third model presented in this thesis is based on simplifying assumptions in order to derive a control-oriented model of an underwater snake robot moving in a virtual horizontal plane that is well-suited for control design and stability analysis. The models are analysed using several techniques. An extensive analysis of the model of a fully immersed underwater snake robot moving in a virtual horizontal plane is conducted. Based on this analysis, a set of essential properties that characterize the overall motion of underwater snake robots is derived. An averaging analysis reveals new fundamental properties of underwater snake robot locomotion that are useful from a motion planning perspective. In this thesis, both the motion analysis and control strategies are conducted based on a general sinusoidal motion pattern which can be used for a broad class of motion patterns including lateral undulation and eel-like motion. This thesis proposes and experimentally validates solutions to the path following control problem for biologically inspired swimming snake robots. In particular, line-of-sight (LOS) and integral line-of-sight (I-LOS) guidance laws, which are combined with a sinusoidal gait pattern and a directional controller that steers the robot towards and along the desired path are proposed. An I-LOS path following controller for steering an underwater snake robot along a straight line path in the presence of ocean currents of unknown direction and magnitude is presented and by using a Poincaré map, it is shown that all state variables of an underwater snake robot, except for the position along the desired path, trace out an exponentially stable periodic orbit. Moreover, this thesis presents the combined use of an artificial potential fields-based path planner with a new waypoint guidance strategy for steering an underwater snake robot along a path defined by waypoints interconnected by straight lines. The waypoints are derived by using a path planner based on the artificial potential field method in order to also address the obstacle avoidance problem. Furthermore, this thesis considers the energy efficiency of underwater snake robots. In particular, the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for the different motion patterns for underwater snake robots is investigated. Based on simulation results, this thesis presents empirical rules to choose the values for the parameters of the motion gait pattern of underwater snake robots. The experimental results support the derived properties regarding the relationship between the gait parameters and the power consumption both for lateral undulation and eel-like motion patterns. Moreover, comparison results are obtained for the total energy consumption and the cost of transportation of underwater snake robots and remotely operated vehicles (ROVs). Furthermore, in this thesis a multi-objective optimization problem is developed with the aim of maximizing the achieved forward velocity of the robot and minimizing the corresponding average power consumption of the system
    corecore