2,243 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Simultaneous Localization and Recognition of Dynamic Hand Gestures

    Full text link
    A framework for the simultaneous localization and recognition of dynamic hand gestures is proposed. At the core of this framework is a dynamic space-time warping (DSTW) algorithm, that aligns a pair of query and model gestures in both space and time. For every frame of the query sequence, feature detectors generate multiple hand region candidates. Dynamic programming is then used to compute both a global matching cost, which is used to recognize the query gesture, and a warping path, which aligns the query and model sequences in time, and also finds the best hand candidate region in every query frame. The proposed framework includes translation invariant recognition of gestures, a desirable property for many HCI systems. The performance of the approach is evaluated on a dataset of hand signed digits gestured by people wearing short sleeve shirts, in front of a background containing other non-hand skin-colored objects. The algorithm simultaneously localizes the gesturing hand and recognizes the hand-signed digit. Although DSTW is illustrated in a gesture recognition setting, the proposed algorithm is a general method for matching time series, that allows for multiple candidate feature vectors to be extracted at each time step.National Science Foundation (CNS-0202067, IIS-0308213, IIS-0329009); Office of Naval Research (N00014-03-1-0108

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe
    • …
    corecore