2,440 research outputs found

    Visibility Constrained Generative Model for Depth-based 3D Facial Pose Tracking

    Full text link
    In this paper, we propose a generative framework that unifies depth-based 3D facial pose tracking and face model adaptation on-the-fly, in the unconstrained scenarios with heavy occlusions and arbitrary facial expression variations. Specifically, we introduce a statistical 3D morphable model that flexibly describes the distribution of points on the surface of the face model, with an efficient switchable online adaptation that gradually captures the identity of the tracked subject and rapidly constructs a suitable face model when the subject changes. Moreover, unlike prior art that employed ICP-based facial pose estimation, to improve robustness to occlusions, we propose a ray visibility constraint that regularizes the pose based on the face model's visibility with respect to the input point cloud. Ablation studies and experimental results on Biwi and ICT-3DHP datasets demonstrate that the proposed framework is effective and outperforms completing state-of-the-art depth-based methods

    Perceiving user's intention-for-interaction: A probabilistic multimodal data fusion scheme

    Get PDF
    International audienceUnderstanding people's intention, be it action or thought, plays a fundamental role in establishing coherent communication amongst people, especially in non-proactive robotics, where the robot has to understand explicitly when to start an interaction in a natural way. In this work, a novel approach is presented to detect people's intention-for-interaction. The proposed detector fuses multimodal cues, including estimated head pose, shoulder orientation and vocal activity detection, using a probabilistic discrete state Hidden Markov Model. The multimodal detector achieves up to 80% correct detection rates improving purely audio and RGB-D based variants

    A Particle Swarm Optimization inspired tracker applied to visual tracking

    Get PDF
    International audienceVisual tracking is dynamic optimization where time and object state simultaneously influence the problem. In this paper, we intend to show that we built a tracker from an evolutionary optimization approach, the PSO (Particle Swarm optimization) algorithm. We demonstrated that an extension of the original algorithm where system dynamics is explicitly taken into consideration, it can perform an efficient tracking. This tracker is also shown to outperform SIR (Sampling Importance Resampling) algorithm with random walk and constant velocity model, as well as a previously PSO inspired tracker, SPSO (Sequential Particle Swarm Optimization). Experiments were performed both on simulated data and real visual RGB-D information. Our PSO inspired tracker can be a very effective and robust alternative for visual tracking

    Web-based visualisation of head pose and facial expressions changes: monitoring human activity using depth data

    Full text link
    Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.Comment: 8th Computer Science and Electronic Engineering, (CEEC 2016), University of Essex, UK, 6 page

    On the Feasibility of Real-Time 3D Hand Tracking using Edge GPGPU Acceleration

    Get PDF
    This paper presents the case study of a non-intrusive porting of a monolithic C++ library for real-time 3D hand tracking, to the domain of edge-based computation. Towards a proof of concept, the case study considers a pair of workstations, a computationally powerful and a computationally weak one. By wrapping the C++ library in Java container and by capitalizing on a Java-based offloading infrastructure that supports both CPU and GPGPU computations, we are able to establish automatically the required server-client workflow that best addresses the resource allocation problem in the effort to execute from the weak workstation. As a result, the weak workstation can perform well at the task, despite lacking the sufficient hardware to do the required computations locally. This is achieved by offloading computations which rely on GPGPU, to the powerful workstation, across the network that connects them. We show the edge-based computation challenges associated with the information flow of the ported algorithm, demonstrate how we cope with them, and identify what needs to be improved for achieving even better performance.Comment: 6 pages, 5 figure

    Human Pose Estimation with Implicit Shape Models

    Get PDF
    This work presents a new approach for estimating 3D human poses based on monocular camera information only. For this, the Implicit Shape Model is augmented by new voting strategies that allow to localize 2D anatomical landmarks in the image. The actual 3D pose estimation is then formulated as a Particle Swarm Optimization (PSO) where projected 3D pose hypotheses are compared with the generated landmark vote distributions

    Motion correction of PET/CT images

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study

    Real-Time Human Motion Capture with Multiple Depth Cameras

    Full text link
    Commonly used human motion capture systems require intrusive attachment of markers that are visually tracked with multiple cameras. In this work we present an efficient and inexpensive solution to markerless motion capture using only a few Kinect sensors. Unlike the previous work on 3d pose estimation using a single depth camera, we relax constraints on the camera location and do not assume a co-operative user. We apply recent image segmentation techniques to depth images and use curriculum learning to train our system on purely synthetic data. Our method accurately localizes body parts without requiring an explicit shape model. The body joint locations are then recovered by combining evidence from multiple views in real-time. We also introduce a dataset of ~6 million synthetic depth frames for pose estimation from multiple cameras and exceed state-of-the-art results on the Berkeley MHAD dataset.Comment: Accepted to computer robot vision 201

    POSEidon: Face-from-Depth for Driver Pose Estimation

    Get PDF
    Fast and accurate upper-body and head pose estimation is a key task for automatic monitoring of driver attention, a challenging context characterized by severe illumination changes, occlusions and extreme poses. In this work, we present a new deep learning framework for head localization and pose estimation on depth images. The core of the proposal is a regression neural network, called POSEidon, which is composed of three independent convolutional nets followed by a fusion layer, specially conceived for understanding the pose by depth. In addition, to recover the intrinsic value of face appearance for understanding head position and orientation, we propose a new Face-from-Depth approach for learning image faces from depth. Results in face reconstruction are qualitatively impressive. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Results show that our method overcomes all recent state-of-art works, running in real time at more than 30 frames per second
    • …
    corecore