18,936 research outputs found

    Mirror, mirror on the wall, tell me, is the error small?

    Full text link
    Do object part localization methods produce bilaterally symmetric results on mirror images? Surprisingly not, even though state of the art methods augment the training set with mirrored images. In this paper we take a closer look into this issue. We first introduce the concept of mirrorability as the ability of a model to produce symmetric results in mirrored images and introduce a corresponding measure, namely the \textit{mirror error} that is defined as the difference between the detection result on an image and the mirror of the detection result on its mirror image. We evaluate the mirrorability of several state of the art algorithms in two of the most intensively studied problems, namely human pose estimation and face alignment. Our experiments lead to several interesting findings: 1) Surprisingly, most of state of the art methods struggle to preserve the mirror symmetry, despite the fact that they do have very similar overall performance on the original and mirror images; 2) the low mirrorability is not caused by training or testing sample bias - all algorithms are trained on both the original images and their mirrored versions; 3) the mirror error is strongly correlated to the localization/alignment error (with correlation coefficients around 0.7). Since the mirror error is calculated without knowledge of the ground truth, we show two interesting applications - in the first it is used to guide the selection of difficult samples and in the second to give feedback in a popular Cascaded Pose Regression method for face alignment.Comment: 8 pages, 9 figure

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bellā€™s palsy, Parkinsonā€™s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    • ā€¦
    corecore