327 research outputs found

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction

    A conceptual affective design framework for the use of emotions in computer game design

    Get PDF
    The purpose of this strategy of inquiry is to understand how emotions influence gameplay and to review contemporary techniques to design for them in the aim of devising a model that brings current disparate parts of the game design process together. Emotions sit at the heart of a game player’s level of engagement. They are evoked across many of the components that facilitate gameplay including the interface, the player’s avatar, non-player characters and narrative. Understanding the role of emotion in creating truly immersive and believable environments is critical for game designers. After discussing a taxonomy of emotion, this paper will present a systematic literature review of designing for emotion in computer games. Following this, a conceptual framework for affective design is offered as a guide for the future of computer game design

    Designing a visual component of communication within 3D avatar virtual worlds

    Get PDF
    Merged with duplicate record 10026.1/2600 on 08.20.2017 by CS (TIS)Over the last few years 3D avatar virtual worlds (AVW) have emerged on the Internet. These are computer generated, multi-user, graphical spaces within which people meet, form social groups and interact with each other in real time, typically through the exchange of text or audio messages. Each user is represented within the space by a digital image known as an avatar, which is usually humanoid in form, and is predominantly under the control of the person it represents. This thesisd escribesa creativep roject that is concernedw ith aspectso f social communication between users of "Ws. In particular, an avatar is designed that is capable of performing body language, and a set of useful gestures are implemented that support aspects of social interaction and integrate with verbal discourse in a meaningful way. In addition to this, a number of scenic properties are derived that enable better comprehension of the non verbal communication, e. g. spatial arrangement, camera position and lighting effects. The research consists of a number of interrelated design activities which include reviewing the literature on avatar design in order to locate goals and variety of the project, therefore building on the on the work of others; a comparative review of three popular 3D AVWs to explore the design problem; a study that aims to gain an understanding of the social dynamics involved; the adaptation of a diagrammatic technique for the purpose of modelling social interaction; the development of 2D and 3D prototype techniques exploring the application of the social interaction modelling technique; a body of creative work developing ideas for conveying non verbal communication and the appraisal of the effectiveness of this creative work. The research contributes to the field of avatar design in a number of ways. Firstly, it develops our understanding of social dynamics in virtual worlds. Secondly, it postulates modes of non verbal communication for both individuals and social groups that supports multi-participatory social discourse. Additionally, a number of useful research techniques have been devised, such as a linear diagramming technique that can be used to represent the structure of conversation thereby facilitating the exploration and understanding of the dynamics of AVW social discourse. The work is of interest to those working in the field of avatar and multi-user virtual world design. It may also be of interest to anyone thinking of using an avatar virtual world for the application of collaborative leaming, collaborative games and conferencing

    Participant responses to virtual agents in immersive virtual environments.

    Get PDF
    This thesis is concerned with interaction between people and virtual humans in the context of highly immersive virtual environments (VEs). Empirical studies have shown that virtual humans (agents) with even minimal behavioural capabilities can have a significant emotional impact on participants of immersive virtual environments (IVEs) to the extent that these have been used in studies of mental health issues such as social phobia and paranoia. This thesis focuses on understanding the impact on the responses of people to the behaviour of virtual humans rather than their visual appearance. There are three main research questions addressed. First, the thesis considers what are the key nonverbal behavioural cues used to portray a specific psychological state. Second, research determines the extent to which the underlying state of a virtual human is recognisable through the display of a key set of cues inferred from the behaviour of real humans. Finally, the degree to which a perceived psychological state in a virtual human invokes responses from participants in immersive virtual environments that are similar to those observed in the physical world is considered. These research questions were investigated through four experiments. The first experiment focused on the impact of visual fidelity and behavioural complexity on participant responses by implementing a model of gaze behaviour in virtual humans. The results of the study concluded that participants expected more life-like behaviours from more visually realistic virtual humans. The second experiment investigated the detrimental effects on participant responses when interacting with virtual humans with low behavioural complexity. The third experiment investigated the differences in responses of participants to virtual humans perceived to be in varying emotional states. The emotional states of the virtual humans were portrayed using postural and facial cues. Results indicated that posture does play an important role in the portrayal of affect however the behavioural model used in the study did not fully cover the qualities of body movement associated with the emotions studied. The final experiment focused on the portrayal of affect through the quality of body movement such as the speed of gestures. The effectiveness of the virtual humans was gauged through exploring a variety of participant responses including subjective responses, objective physiological and behavioural measures. The results show that participants are affected and respond to virtual humans in a significant manner provided that an appropriate behavioural model is used

    Lip syncing method for realistic expressive three-dimensional face model

    Get PDF
    Lip synchronization of 3D face model is now being used in a multitude of important fields. It brings a more human and dramatic reality to computer games, films and interactive multimedia, and is growing in use and importance. High level realism can be used in demanding applications such as computer games and cinema. Authoring lip syncing with complex and subtle expressions is still difficult and fraught with problems in terms of realism. Thus, this study proposes a lip syncing method of realistic expressive 3D face model. Animated lips require a 3D face model capable of representing the movement of face muscles during speech and a method to produce the correct lip shape at the correct time. The 3D face model is designed based on MPEG-4 facial animation standard to support lip syncing that is aligned with input audio file. It deforms using Raised Cosine Deformation function that is grafted onto the input facial geometry. This study also proposes a method to animate the 3D face model over time to create animated lip syncing using a canonical set of visemes for all pairwise combinations of a reduced phoneme set called ProPhone. Finally, this study integrates emotions by considering both Ekman model and Plutchik’s wheel with emotive eye movements by implementing Emotional Eye Movements Markup Language to produce realistic 3D face model. The experimental results show that the proposed model can generate visually satisfactory animations with Mean Square Error of 0.0020 for neutral, 0.0024 for happy expression, 0.0020 for angry expression, 0.0030 for fear expression, 0.0026 for surprise expression, 0.0010 for disgust expression, and 0.0030 for sad expression

    Continuous Analysis of Affect from Voice and Face

    Get PDF
    Human affective behavior is multimodal, continuous and complex. Despite major advances within the affective computing research field, modeling, analyzing, interpreting and responding to human affective behavior still remains a challenge for automated systems as affect and emotions are complex constructs, with fuzzy boundaries and with substantial individual differences in expression and experience [7]. Therefore, affective and behavioral computing researchers have recently invested increased effort in exploring how to best model, analyze and interpret the subtlety, complexity and continuity (represented along a continuum e.g., from −1 to +1) of affective behavior in terms of latent dimensions (e.g., arousal, power and valence) and appraisals, rather than in terms of a small number of discrete emotion categories (e.g., happiness and sadness). This chapter aims to (i) give a brief overview of the existing efforts and the major accomplishments in modeling and analysis of emotional expressions in dimensional and continuous space while focusing on open issues and new challenges in the field, and (ii) introduce a representative approach for multimodal continuous analysis of affect from voice and face, and provide experimental results using the audiovisual Sensitive Artificial Listener (SAL) Database of natural interactions. The chapter concludes by posing a number of questions that highlight the significant issues in the field, and by extracting potential answers to these questions from the relevant literature. The chapter is organized as follows. Section 10.2 describes theories of emotion, Sect. 10.3 provides details on the affect dimensions employed in the literature as well as how emotions are perceived from visual, audio and physiological modalities. Section 10.4 summarizes how current technology has been developed, in terms of data acquisition and annotation, and automatic analysis of affect in continuous space by bringing forth a number of issues that need to be taken into account when applying a dimensional approach to emotion recognition, namely, determining the duration of emotions for automatic analysis, modeling the intensity of emotions, determining the baseline, dealing with high inter-subject expression variation, defining optimal strategies for fusion of multiple cues and modalities, and identifying appropriate machine learning techniques and evaluation measures. Section 10.5 presents our representative system that fuses vocal and facial expression cues for dimensional and continuous prediction of emotions in valence and arousal space by employing the bidirectional Long Short-Term Memory neural networks (BLSTM-NN), and introduces an output-associative fusion framework that incorporates correlations between the emotion dimensions to further improve continuous affect prediction. Section 10.6 concludes the chapter

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing
    corecore