44,100 research outputs found

    Ear Contour Detection and Modeling Using Statistical Shape Models

    Get PDF
    Ear detection is an actively growing area of research because of its applications in human head tracking and biometric recognition. In head tracking, it is used to augment face detectors and to perform pose estimation. In biometric systems, it is used both as an independent modality and in multi-modal biometric recognition. The ear shape is the preferred feature used to perform detection because of its unique structure in both 2D color images and 3D range images. Ear shape models have also been used in literature to perform ear detection, but at a cost of a loss in information about the exact ear structure. In this thesis, we seek to address these issues in existing methods by a combination of techniques including Viola Jones Haar Cascades, Active Shape Models (ASM) and Dijkstra\u27s shortest path algorithm to devise a shape model of the ear using geometric parameters and mark an accurate contour around the ear using only 2D color images. The Viola Jones Haar Cascades classifier is used to mark a rectangular region around the ear in a left side profile image. Then a set of key landmark points around the ear including the ear outer helix, the ear anti-helix and the ear center is extracted using the ASM. This set of landmarks is then fed into Dijkstra\u27s shortest path algorithm which traces out the strongest edge between adjacent landmarks, to extract the entire ear outer contour, while maintaining a high computational efficiency

    Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions

    Get PDF
    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose tu use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available datasets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.Comment: 12 pages, 5 figures, 3 table

    Face Alignment Assisted by Head Pose Estimation

    Full text link
    In this paper we propose a supervised initialization scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network model for reliable and accurate head pose estimation. Instead of using a mean face shape, or randomly selected shapes for cascaded face alignment initialisation, we propose two schemes for generating initialisation: the first one relies on projecting a mean 3D face shape (represented by 3D facial landmarks) onto 2D image under the estimated head pose; the second one searches nearest neighbour shapes from the training set according to head pose distance. By doing so, the initialisation gets closer to the actual shape, which enhances the possibility of convergence and in turn improves the face alignment performance. We demonstrate the proposed method on the benchmark 300W dataset and show very competitive performance in both head pose estimation and face alignment.Comment: Accepted by BMVC201
    • …
    corecore