132 research outputs found

    BDPK: Bayesian Dehazing Using Prior Knowledge

    Full text link
    IEEE Atmospheric scattering model (ASM) has been widely used in hazy image restoration. However, the recovered albedo might deviate from the real scene once the input hazy image cannot fully satisfy the model’s assumptions such as the homogeneous atmosphere and even illumination. In this paper, we break these limitations and redefine a more reliable atmospheric scattering model (RASM) that is extremely adaptable for various practical scenarios. Benefiting from RASM, a simple yet effective Bayesian dehazing algorithm (BDPK) is further proposed based on the prior knowledge. Our strategy is to convert the single image dehazing problem into a maximum a-posteriori probability (MAP) one that can be approximated as an optimization function using the existing priori constraints. To efficiently solve this optimization function, the alternating minimizing technique (AMT) is introduced, which enables us to directly restore the scene albedo. Experiments on a number of challenging images reveal the power of BDPK on removing haze and verify its superiority over several state-of-the-art techniques in terms of quality and efficiency

    Visibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaging

    Get PDF
    136 p.When acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques

    Visibility Recovery on Images Acquired in Attenuating Media. Application to Underwater, Fog, and Mammographic Imaging

    Get PDF
    When acquired in attenuating media, digital images often suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasantness for the user. In these cases, mathematical image processing reveals itself as an ideal tool to recover some of the information lost during the degradation process. In this dissertation, we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fog removal and mammographic image processing. In the case of digital mammograms, X-ray beams traverse human tissue, and electronic detectors capture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces lowcontrasted images in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility. For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges, in this dissertation we develop new methodologies that rely on: a) physical models of the observed degradation, and b) the calculus of variations. Equipped with this powerful machinery, we design novel theoretical and computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energies are composed of different integral terms that are simultaneously minimized by means of efficient numerical schemes, producing a clean, visually-pleasant and useful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validate our methods, confirming that the developed techniques outperform other existing approaches in the literature

    Image Enhancement Methods for Remote Sensing: A Survey

    Get PDF
    The quality of the images obtained from remote sensing devices is very important for many image processing applications. Most of the enhancement methods are based on histogram modification and transform based methods. Histogram modification based methods aim to modify the histogram of the input image to obtain a more uniform distribution. Transform based methods apply a certain transform to the input image and enhance the image in transform domain followed by the inverse transform. In this work, both histogram modification and transform domain methods have been considered, as well as hybrid methods. Moreover, a new hybrid algorithm is proposed for remote sensing image enhancement. Visual comparisons as well as quantitative comparisons have been carried out for different enhancement methods. For objective comparison quality metrics, namely Contrast Gain, Enhancement Measurement, Discrete Entropy and Average Mean Brightness Error have been used. The comparisons show that, the histogram modification methods have a better contrast improvement, while transform domain methods have a better performance in edge enhancement and color preservation. Moreover, hybrid methods which combine the two former approaches have higher potential

    Improving images in turbid water through enhanced color correction and particle swarm-intelligence fusion (CCPF)

    Get PDF
    When light travels through a water medium, selective attenuation and scattering have a profound impact on the underwater image. These limitations reduce image quality and impede the ability to perform visual tasks. The suggested integrated color correction with intelligence fusion of particle swarm technique (CCPF) is designed with four phases. The first phase presents a novel way to make improvement on underwater color cast. Limit the improvement to only red color channel. In the second phase, an image is then neutralized from the original image by brightness reconstruction technique resulting in enhancing the image contrast. Next, the mean adjustment based on particle swarm intelligence is implemented to improve the image detail. With the swarm intelligence method, the mean values of inferior color channels are shifted to be close to the mean value of a good color channel. Lastly, a fusion between the brightness reconstructed histogram and modified mean particle swarm intelligence histogram is applied to balance the image color. Analysis of underwater images taken in different depths shows that the proposed CCPF method improves the quality of the output image in terms of neutralizing effectiveness and details accuracy, consequently, significantly outperforming the other state-of-the-art methods. The proposed CCPF approach produces highest average entropy value of 7.823 and average UIQM value of 6.287

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors
    • …
    corecore