111 research outputs found

    Activity Report 1996-97

    Get PDF

    Recent advances and future challenges for artificial neural systems in geotechnical engineering applications

    Get PDF
    Published as Open Access article.Artificial neural networks (ANNs) are a form of artificial intelligence that has proved to provide a high level of competency in solving many complex engineering problems that are beyond the computational capability of classical mathematics and traditional procedures. In particular, ANNs have been applied successfully to almost all aspects of geotechnical engineering problems. Despite the increasing number and diversity of ANN applications in geotechnical engineering, the contents of reported applications indicate that the progress in ANN development and procedures is marginal and not moving forward since the mid-1990s. This paper presents a brief overview of ANN applications in geotechnical engineering, briefly provides an overview of the operation of ANN modeling, investigates the current research directions of ANNs in geotechnical engineering, and discusses some ANN modeling issues that need further attention in the future, including model robustness; transparency and knowledge extraction; extrapolation; uncertainty.Mohamed A. Shahin, Mark B. Jaksa and Holger R. Maie

    A Credit Rating Model in a Fuzzy Inference System Environment

    Get PDF
    One of the most important functions of an export credit agency (ECA) is to act as an intermediary between national governments and exporters. These organizations provide financing to reduce the political and commercial risks in international trade. The agents assess the buyers based on financial and non-financial indicators to determine whether it is advisable to grant them credit. Because many of these indicators are qualitative and inherently linguistically ambiguous, the agents must make decisions in uncertain environments. Therefore, to make the most accurate decision possible, they often utilize fuzzy inference systems. The purpose of this research was to design a credit rating model in an uncertain environment using the fuzzy inference system (FIS). In this research, we used suitable variables of agency ratings from previous studies and then screened them via the Delphi method. Finally, we created a credit rating model using these variables and FIS including related IF-THEN rules which can be applied in a practical setting

    Force reflecting joystick control for applications to bilateral teleoperation in construction machinery

    Get PDF
    This paper presents a simple and effective force reflecting joystick controller for applications to bilateral teleoperation in construction machinery. First, this controller is a combination of an advanced force reflecting gain tuner and two local adaptive controllers, master and slave. Second, the force reflecting gain tuner is effectively designed using recursive least square method and fuzzy logics to estimate directly and accurately the environmental characteristics and, consequently, to produce properly a force reflection. Third, the local adaptive controllers are simply designed using fuzzy technique and optimized using a smart leaning mechanism to ensure that the slave follows well any given trajectory while the operator is able to achieve truly physical perception of interactions at the remote site. An experimental master-slave manipulator is setup and real-time control tests are carried out under various environmental conditions to evaluate the effectiveness of the proposed controller

    A Systematic Review of Real-time Urban Flood Forecasting Model in Malaysia and Indonesia -Current Modelling and Challenge

    Get PDF
    Several metropolitan areas in tropical Southeast Asia, mainly in Malaysia and Indonesia have lately been witnessing unprecedentedly severe flash floods owing to unexpected climate change. The fast water flooding has caused extraordinarily serious harm to urban populations and social facilities. In addition, urban Southeast Asia generally has insufficient capacity in drainage systems, complex land use patterns, and a largely susceptible population in confined urban regions. To lower the urban flood risk and strengthen the resilience of vulnerable urban populations, it has been of fundamental relevance to create real-time urban flood forecasting systems for flood disaster prevention agencies and the urban public. This review examined the state-of-the-art models of real-time forecasting systems for urban flash floods in Malaysia and Indonesia. The real-time system primarily comprises the following subsystems, i.e., rainfall forecasting, drainage system modeling, and inundation area mapping. This review described the current urban flood forecasting modeling for rainfall forecasting, physical-process-based hydraulic models for flood inundation prediction, and data-driven artificial intelligence (AI) models for the real-time forecasting system. The analysis found that urban flood forecasting modeling based on data-driven AI models is the most applied in many metropolitan locations in Malaysia and Indonesia. The analysis also evaluated the existing potential of data-driven AI models for real-time forecasting systems as well as the challenges towards i

    Vision-based Monitoring System for High Quality TIG Welding

    Get PDF
    The current study evaluates an automatic system for real-time arc welding quality assessment and defect detection. The system research focuses on the identification of defects that may arise during the welding process by analysing the occurrence of any changes in the visible spectrum of the weld pool and the surrounding area. Currently, the state-of-the-art is very simplistic, involving an operator observing the process continuously. The operator assessment is subjective, and the criteria of acceptance based solely on operator observations can change over time due to the fatigue leading to incorrect classification. Variations in the weld pool are the initial result of the chosen welding parameters and torch position and at the same time the very first indication of the resulting weld quality. The system investigated in this research study consists of a camera used to record the welding process and a processing unit which analyse the frames giving an indication of the quality expected. The categorisation is achieved by employing artificial neural networks and correlating the weld pool appearance with the resulting quality. Six categories denote the resulting quality of a weld for stainless steel and aluminium. The models use images to learn the correlation between the aspect of the weld pool and the surrounding area and the state of the weld as denoted by the six categories, similar to a welder categorisation. Therefore the models learn the probability distribution of images’ aspect over the categories considered

    Risk-Based Maintenance Planning Model for Oil and Gas Pipelines

    Get PDF
    Oil and gas pipelines are the main means of transporting fossil fuels from the wellheads and processing facilities to the distribution centers. The 2013 US infrastructure report card assigned a grade of D+ to energy pipelines signifying they are in a poor condition. More than 10,000 incidents were reported on oil and gas pipelines during the last two decades, most of which resulted in considerable consequences. Recent failures and ruptures have raised concerns over the risk of failure of such pipes in Canada. The main objective of this research is to develop a risk-based maintenance planning model for oil and gas pipelines. The research develops a probability of failure (POF) and a consequence of failure (COF) prediction model and establishes a risk-based inspection and simulation-based rehabilitation planning models. The POF model develops a comprehensive index by applying the granular theory of uncertainty and the principles of probability theory to forecast the POF of oil and gas pipes. The neuro-fuzzy technique is employed to develop a model that forecasts the financial consequences of the potential failures of such pipes. An integrated fuzzy risk evaluation model is developed with 25 fuzzy rules to assess a pipeline’s risk index. A fuzzy expert system is developed to select the inspection tools and determine their run-frequency according to the failure risk of a pipeline. Regression analysis is applied to develop a risk growth profile to forecast the maximum failure risk of various inspection scenarios. Scenarios are ranked based on their risk-cost index, which integrates two main indices: 1) maximum risk of failure, and 2) life cycle cost of scenarios, computed by applying the Monte-Carlo simulation. Finally, a comprehensive maintenance model proposes the optimum maintenance plans with the lowest LCC, developing a third-degree risk-based deterioration profile of the pipelines. The POF model’s sensitivity results highlight that cathodic protection effectiveness and soil resistivity are the leading causes of external corrosion failures, while the depth of cover is an important factor of mechanical damages. The COF model attests that diameter, as well as the location properties are important factors for estimating the financial consequences. The developed risk assessment model is validated using a test dataset that proved the models are accurate with about 80% validity. The developed models are applied on a case study of a 24-inch pipe. The POF and COF of the pipe are computed, and the results suggest that the pipe’s risk index is above medium with an average index of 3.5. The study proposes the application of an inspection tool, which decreases the risk growth by 50% during the service life of the pipeline. The application of the maintenance planning model proposes a combination of recoat, repair, and replacement with a medium size of rehabilitation. The net present value of the proposed scenario of maintenance is estimated to cost around 1.7 million dollars over the life cycle of the pipeline, compared to the last-ranked alternative that costs over three million dollars. This research offers a framework to develop a comprehensive index to predict the failure risk of pipes using historical data that can be extended to the other infrastructure types. It develops a model to plan for the optimal pipeline maintenance, and provides an overall image of its service life. The developed models will help the operators predict the risk of failure and plan appropriately for the life cycle of their oil and gas pipelines
    corecore