23,280 research outputs found

    Efficient verification of hazard-freedom in gate-level timed asynchronous circuits

    Get PDF
    Journal ArticleAbstract-This paper presents an efficient method for verifying hazard-freedom in gate-level timed asynchronous circuits. Timed circuits are a class of asynchronous circuits that are optimized using explicit timing information. In asynchronous circuits, correct operation requires that there are no hazards in the circuit implementation. Therefore, when designing an asynchronous circuit, each internal node and output of the circuit must be verified for hazard-freedom to ensure correct operation. Current verification algorithms for timed circuits require an explicit state exploration that often results in state explosion for even modest-sized examples. The goal of this paper is to abstract the behavior of internal nodes and utilize this information to make a conservative determination of hazard-freedom for each node in the circuit. Experimental results indicate that this approach is substantially more efficient than existing timing verification tools. These results also indicate that this method scales well for large examples that could not be previously analyzed, in that it is capable of analyzing these circuits in less than a second. While this method is conservative in that some false hazards may be reported, our results indicate that their number is small

    General Semiparametric Shared Frailty Model Estimation and Simulation with frailtySurv

    Get PDF
    The R package frailtySurv for simulating and fitting semi-parametric shared frailty models is introduced. Package frailtySurv implements semi-parametric consistent estimators for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian and power variance function, and provides consistent estimators of the standard errors of the parameters' estimators. The parameters' estimators are asymptotically normally distributed, and therefore statistical inference based on the results of this package, such as hypothesis testing and confidence intervals, can be performed using the normal distribution. Extensive simulations demonstrate the flexibility and correct implementation of the estimator. Two case studies performed with publicly available datasets demonstrate applicability of the package. In the Diabetic Retinopathy Study, the onset of blindness is clustered by patient, and in a large hard drive failure dataset, failure times are thought to be clustered by the hard drive manufacturer and model

    Timing Robustness in the Budding and Fission Yeast Cell Cycles

    Get PDF
    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Pattern-Based Genetic Algorithm for Airborne Conflict Resolution

    Get PDF
    NASA has developed the Autonomous Operations Planner (AOP) airborne decision support tool to explore advanced air traffic control concepts that include delegating separation authority to aircraft. A key element of the AOP is its strategic conflict resolution (CR) algorithm, which must resolve conflicts while maintaining conformance with traffic flow management constraints. While a previous CR algorithm, which focused on broader flight plan optimization objectives as a part of conflict resolution, had successfully been developed, new research has identified the need for resolution routes the users find more acceptable (i.e., simpler and more intuitive). A new CR algorithm is presented that uses a combination of pattern-based maneuvers and a genetic algorithm to achieve these new objectives. Several lateral and vertical maneuver patterns are defined and the application of the genetic algorithm explained. A new approach to defining a conflicted fitness function using estimates of the local conflict region around a conflicted trajectory is also presented. Preliminary performance characteristics of the implemented algorithm are provided

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    Get PDF
    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers
    corecore