14 research outputs found

    Approximation of Baker domains and convergence of Julia sets.

    Get PDF
    Der Ziel dieser Arbeit ist der Hausdorff Konvergenz der Juliamengen zu beweisen, als wir eine Familie von ganzen transzendenten Funktionen, die ein einziges Bakergebiet enthalten, approximieren. Als erstes geben wir eine vollständige dynamische Beschreibung der approximierenden transzendenten Funktionen und zeigen die Existenz von invarianten Gebiete unter der Iterierte. Insbesondere besitzen die approximierenden Funktionen ein Attraktionsgebiet, das gegen das Bakergebiet als Kernel im Sinn von Carathéodory konvergiert. Letztlich beweisen wir Hausdorff Konvergenz auf zwei Wege. Einerseits zeigen wir unter bestimmten Bedingungen der Fatoumenge der Grenzfunktion die Hausdorff Konvergenz der Juliamengen. Anderseits zeigen wir unter verschiedenen Bedingungen der Fatoumenge der Grenzfunktion die Hausdorff Konvergenz der ausgefüllten Juliamengen, die bezüglich der Bakergebiet oder der Attraktionsgebiet definiert sind

    Progress in Group Field Theory and Related Quantum Gravity Formalisms

    Get PDF
    Following the fundamental insights from quantum mechanics and general relativity, geometry itself should have a quantum description; the search for a complete understanding of this description is what drives the field of quantum gravity. Group field theory is an ambitious framework in which theories of quantum geometry are formulated, incorporating successful ideas from the fields of matrix models, ten-sor models, spin foam models and loop quantum gravity, as well as from the broader areas of quantum field theory and mathematical physics. This special issue collects recent work in group field theory and these related approaches, as well as other neighbouring fields (e.g., cosmology, quantum information and quantum foundations, statistical physics) to the extent that these are directly relevant to quantum gravity research

    Framework for Automatic Identification of Paper Watermarks with Chain Codes

    Get PDF
    Title from PDF of title page viewed May 21, 2018Dissertation advisor: Reza DerakhshaniVitaIncludes bibliographical references (pages 220-235)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2017In this dissertation, I present a new framework for automated description, archiving, and identification of paper watermarks found in historical documents and manuscripts. The early manufacturers of paper have introduced the embedding of identifying marks and patterns as a sign of a distinct origin and perhaps as a signature of quality. Thousands of watermarks have been studied, classified, and archived. Most of the classification categories are based on image similarity and are searchable based on a set of defined contextual descriptors. The novel method presented here is for automatic classification, identification (matching) and retrieval of watermark images based on chain code descriptors (CC). The approach for generation of unique CC includes a novel image preprocessing method to provide a solution for rotation and scale invariant representation of watermarks. The unique codes are truly reversible, providing high ratio lossless compression, fast searching, and image matching. The development of a novel distance measure for CC comparison is also presented. Examples for the complete process are given using the recently acquired watermarks digitized with hyper-spectral imaging of Summa Theologica, the work of Antonino Pierozzi (1389 – 1459). The performance of the algorithm on large datasets is demonstrated using watermarks datasets from well-known library catalogue collections.Introduction -- Paper and paper watermarks -- Automatic identification of paper watermarks -- Rotation, Scale and translation invariant chain code -- Comparison of RST_Invariant chain code -- Automatic identification of watermarks with chain codes -- Watermark composite feature vector -- Summary -- Appendix A. Watermarks from the Bernstein Collection used in this study -- Appendix B. The original and transformed images of watermarks -- Appendix C. The transformed and scaled images of watermarks -- Appendix D. Example of chain cod

    A Historical Survey and Conceptual Account of States of Affairs

    Get PDF
    States of affairs are entities like snow’s being white. This dissertation encompasses two projects. First, I provide a historical survey of the concept of state of affairs as it has been used in the history of ontology. Second, I provide a novel conceptual account of states of affairs

    The universal coefficient theorem and quantum field theory

    Get PDF
    During the end of the 1950's Alexander Grothendieck observed the importance of the coefficient groups in cohomology. Three decades later, he presented his ``Esquisse d'un Programme" to the main french funding body. This program also included the use of different coefficient groups in the definition of various (co)homologies. His proposal was rejected. Another three decades later, in the 21st century, his research proposal is considered one of the most inspiring and important collection of ideas in pure mathematics. His ideas brought together algebraic topology, geometry, Galois theory, etc. becoming the origin for several new branches of mathematics. Today, less than one year after his death, Grothendieck is considered one of the most influential mathematicians worldwide. His ideas were important for the proofs of some of the most remarkable mathematical problems like the Weil Conjectures, Mordell Conjectures and the solution of Fermat's last theorem. Grothendieck's dessins d'enfant have been used in mathematical physics in various domains. Seiberg-Witten curves, N=1 and N=2 gauge theories and matrix models are a few examples where his insights are relevant. In this thesis I try to connect the idea of cohomology with coefficients in various sheaves to some areas of modern research in physics. The applications are manifold: the universal coefficient theorem presents connections to the topological genus expansion invented by 't Hooft and applied to quantum chromodynamics (QCD) and string theory, but also to strongly coupled electronic systems or condensed matter physics. It also appears to give a more intuitive explanation for topological recursion formulas and the holomorphic anomaly equations. The counting of BPS states may also profit from this new perspective. Indeed, the merging of cohomology classes when a change in coefficient groups is implemented may be related to the wall-crossing formulas and the phenomenon of decay or coupling of BPS states while crossing stability walls. The ExtExt groups appearing in universal coefficient theorems may be regarded as obstructions characterizing the phenomena occurring when BPS stability walls are being crossed. Another important aspect is the existence of dualities. These are the non-perturbative analogue of symmetry transformations. Until now, they were discovered more by accident or by educated guesswork. I show in this thesis that there exists an underlying structure to the dualities, a structure that connects them the number fields used as coefficients in (co)homologies. This observation makes a nontrivial connection between number theory and physics

    Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), Vol. IV

    Get PDF
    The fourth volume, in my book series of “Collected Papers”, includes 100 published and unpublished articles, notes, (preliminary) drafts containing just ideas to be further investigated, scientific souvenirs, scientific blogs, project proposals, small experiments, solved and unsolved problems and conjectures, updated or alternative versions of previous papers, short or long humanistic essays, letters to the editors - all collected in the previous three decades (1980-2010) – but most of them are from the last decade (2000-2010), some of them being lost and found, yet others are extended, diversified, improved versions. This is an eclectic tome of 800 pages with papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory, information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics. It was my preoccupation and collaboration as author, co-author, translator, or cotranslator, and editor with many scientists from around the world for long time. Many topics from this book are incipient and need to be expanded in future explorations
    corecore