978 research outputs found

    Towards an Adaptive Skeleton Framework for Performance Portability

    Get PDF
    The proliferation of widely available, but very different, parallel architectures makes the ability to deliver good parallel performance on a range of architectures, or performance portability, highly desirable. Irregularly-parallel problems, where the number and size of tasks is unpredictable, are particularly challenging and require dynamic coordination. The paper outlines a novel approach to delivering portable parallel performance for irregularly parallel programs. The approach combines declarative parallelism with JIT technology, dynamic scheduling, and dynamic transformation. We present the design of an adaptive skeleton library, with a task graph implementation, JIT trace costing, and adaptive transformations. We outline the architecture of the protoype adaptive skeleton execution framework in Pycket, describing tasks, serialisation, and the current scheduler.We report a preliminary evaluation of the prototype framework using 4 micro-benchmarks and a small case study on two NUMA servers (24 and 96 cores) and a small cluster (17 hosts, 272 cores). Key results include Pycket delivering good sequential performance e.g. almost as fast as C for some benchmarks; good absolute speedups on all architectures (up to 120 on 128 cores for sumEuler); and that the adaptive transformations do improve performance

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Strong (X)HTML Compliance with Haskell\u27s Flexible Type System

    Get PDF
    We report on the embedding of a domain specific language, (X)HTML, into Haskell and demonstrate how this superficial non-context-free language can be represented and rendered to guarantee World Wide Web Consortium (W3C) compliance. Compliance of web content is important for the health of the Internet, accessibility, visibility, and reliable search. While tools exist to verify web content is compliant according to the W3C, few systems guarantee that all produced content is compliant. We present CH-(X)HTML, a library for generating compliant (X)HTML content by using Haskell to encode the nontrivial syntax of (X)HTML set forth by the W3C. Any compliant document can be represented with this library, while a compilation error will occur if non-compliant markup is attempted. To demonstrate our library we present examples and performance measurements

    Who watches the watchers: Validating the ProB Validation Tool

    Full text link
    Over the years, ProB has moved from a tool that complemented proving, to a development environment that is now sometimes used instead of proving for applications, such as exhaustive model checking or data validation. This has led to much more stringent requirements on the integrity of ProB. In this paper we present a summary of our validation efforts for ProB, in particular within the context of the norm EN 50128 and safety critical applications in the railway domain.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates
    • …
    corecore