5,762 research outputs found

    Internal hashing for dynamic and static tables

    Get PDF
    This tutorial discusses one of the oldest problems in computing: how to search and retrieve keyed information from a list in the least amount of time. Hashing - a technique that mathematically converts a key into a storage address - is one of the best methods of finding and retrieving information associated with a unique identifying key. We briefly survey techniques which have evolved over the past 25 years and then introduce more recent research results for extremely compact and fast methods based on per­fect and minimal perfect hashing. Perfect and minimal perfect hashing is useful for rapid lookup in a static table such as keywords in a compiler, spelling checkers, and database management systems. The results presented here show techniques for constructing long lists which can be searched in one memo­ry reference.KEYWORDS AND PHRASES: Key-to-address transformation, hash coding, hash table, scatter table, bucket hashing, perfect hashing, minimal perfect hashin

    Boosting Multi-Core Reachability Performance with Shared Hash Tables

    Get PDF
    This paper focuses on data structures for multi-core reachability, which is a key component in model checking algorithms and other verification methods. A cornerstone of an efficient solution is the storage of visited states. In related work, static partitioning of the state space was combined with thread-local storage and resulted in reasonable speedups, but left open whether improvements are possible. In this paper, we present a scaling solution for shared state storage which is based on a lockless hash table implementation. The solution is specifically designed for the cache architecture of modern CPUs. Because model checking algorithms impose loose requirements on the hash table operations, their design can be streamlined substantially compared to related work on lockless hash tables. Still, an implementation of the hash table presented here has dozens of sensitive performance parameters (bucket size, cache line size, data layout, probing sequence, etc.). We analyzed their impact and compared the resulting speedups with related tools. Our implementation outperforms two state-of-the-art multi-core model checkers (SPIN and DiVinE) by a substantial margin, while placing fewer constraints on the load balancing and search algorithms.Comment: preliminary repor

    Dynamic Ordered Sets with Exponential Search Trees

    Full text link
    We introduce exponential search trees as a novel technique for converting static polynomial space search structures for ordered sets into fully-dynamic linear space data structures. This leads to an optimal bound of O(sqrt(log n/loglog n)) for searching and updating a dynamic set of n integer keys in linear space. Here searching an integer y means finding the maximum key in the set which is smaller than or equal to y. This problem is equivalent to the standard text book problem of maintaining an ordered set (see, e.g., Cormen, Leiserson, Rivest, and Stein: Introduction to Algorithms, 2nd ed., MIT Press, 2001). The best previous deterministic linear space bound was O(log n/loglog n) due Fredman and Willard from STOC 1990. No better deterministic search bound was known using polynomial space. We also get the following worst-case linear space trade-offs between the number n, the word length w, and the maximal key U < 2^w: O(min{loglog n+log n/log w, (loglog n)(loglog U)/(logloglog U)}). These trade-offs are, however, not likely to be optimal. Our results are generalized to finger searching and string searching, providing optimal results for both in terms of n.Comment: Revision corrects some typoes and state things better for applications in subsequent paper

    c-trie++: A Dynamic Trie Tailored for Fast Prefix Searches

    Full text link
    Given a dynamic set KK of kk strings of total length nn whose characters are drawn from an alphabet of size σ\sigma, a keyword dictionary is a data structure built on KK that provides locate, prefix search, and update operations on KK. Under the assumption that α=w/lgσ\alpha = w / \lg \sigma characters fit into a single machine word ww, we propose a keyword dictionary that represents KK in nlgσ+Θ(klgn)n \lg \sigma + \Theta(k \lg n) bits of space, supporting all operations in O(m/α+lgα)O(m / \alpha + \lg \alpha) expected time on an input string of length mm in the word RAM model. This data structure is underlined with an exhaustive practical evaluation, highlighting the practical usefulness of the proposed data structure, especially for prefix searches - one of the most elementary keyword dictionary operations
    corecore