39 research outputs found

    Spatial Images Feature Extraction Based on Bayesian Nonlocal Means Filter and Improved Contourlet Transform

    Get PDF
    Spatial images are inevitably mixed with different levels of noise and distortion. The contourlet transform can provide multidimensional sparse representations of images in a discrete domain. Because of its filter structure, the contourlet transform is not translation-invariant. In this paper, we use a nonsubsampled pyramid structure and a nonsubsampled directional filter to achieve multidimensional and translation-invariant image decomposition for spatial images. A nonsubsampled contourlet transform is used as the basis for an improved Bayesian nonlocal means (NLM) filter for different frequencies. The Bayesian model adds a sigma range in image a priori operations, which can be more effective in protecting image details. The NLM filter retains the image edge content and assigns greater weight to similarities for edge pixels. Experimental results both on standard images and spatial images confirm that the proposed algorithm yields significantly better performance than nonsubsampled wavelet transform, contourlet, and curvelet approaches

    Bi-Exponential Edge-Preserving Smoother

    Full text link

    Reduction of crosstalk in blended-shot migration

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORWhen migrating more than one shot at the same time, the nonlinearity of the imaging condition causes the final image to contain so-called crosstalk, i.e., the results of the interference of wavefields associated with different sources. We studied various ideas of using weights in the imaging condition, called encoding, for the reduction of crosstalk. We combined the ideas of random phase and/or amplitude encoding and random alteration of the sign with additional multiplication with powers of the imaginary unit. This procedure moved part of the crosstalk to the imaginary part of the resulting image, leaving the desired crosscorrelation in the real part. In this way, the final image is less impaired. Our results indicated that with a combination of these weights, the crosstalk can be reduced by a factor of four as compared with unencoded shot blending. Moreover, we evaluated the selection procedure of sources contributing to each group of shots. We compared random choice with a deterministic procedure, in which the random numbers were exchanged for numbers similar to those of a Costas array. These numbers preserve certain properties of a random choice, but avoid the occurrence of patterns in the distribution. Our objective was to avoid nearby source being added to the same group of shots, which cannot be guaranteed with a random choice. Finally, we determined that the crosstalk noise can be reduced after migration by image processing.When migrating more than one shot at the same time, the nonlinearity of the imaging condition causes the final image to contain so-called crosstalk, i.e., the results of the interference of wavefields associated with different sources. We studied various ideas of using weights in the imaging condition, called encoding, for the reduction of crosstalk. We combined the ideas of random phase and/or amplitude encoding and random alteration of the sign with additional multiplication with powers of the imaginary unit. This procedure moved part of the crosstalk to the imaginary part of the resulting image, leaving the desired crosscorrelation in the real part. In this way, the final image is less impaired. Our results indicated that with a combination of these weights, the crosstalk can be reduced by a factor of four as compared with unencoded shot blending. Moreover, we evaluated the selection procedure of sources contributing to each group of shots. We compared random choice with a deterministic procedure, in which the random numbers were exchanged for numbers similar to those of a Costas array. These numbers preserve certain properties of a random choice, but avoid the occurrence of patterns in the distribution. Our objective was to avoid nearby source being added to the same group of shots, which cannot be guaranteed with a random choice. Finally, we determined that the crosstalk noise can be reduced after migration by image processing.801S31S41CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORsem informaçãosem informaçã

    Quantum random number generators for industrial applications

    Get PDF
    Premi extraordinari doctorat UPC curs 2017-2018. Àmbit de CiènciesRandomness is one of the most intriguing, inspiring and debated topics in the history of the world. It appears every time we wonder about our existence, about the way we are, e.g. Do we have free will? Is evolution a result of chance? It is also present in any attempt to understand our anchoring to the universe, and about the rules behind the universe itself, e.g. Why are we here and when and why did all this start? Is the universe deterministic or does unpredictability exist? Remarkably, randomness also plays a central role in the information era and technology. Random digits are used in communication protocols like Ethernet, in search engines and in processing algorithms as page rank. Randomness is also widely used in so-called Monte Carlo methods in physics, biology, chemistry, finance and mathematics, as well as in many other disciplines. However, the most iconic use of random digits is found in cryptography. Random numbers are used to generate cryptographic keys, which are the most basic element to provide security and privacy to any form of secure communication. This thesis has been carried out with the following questions in mind: Does randomness exist in photonics? If so, how do we mine it and how do we mine it in a massively scalable manner so that everyone can easily use it? Addressing these two questions lead us to combine tools from fundamental physics and engineering. The thesis starts with an in-depth study of the phase diffusion process in semiconductor lasers and its application to random number generation. In contrast to other physical processes based on deterministic laws of nature, the phase diffusion process has a pure quantum mechanical origin, and, as such, is an ideal source for generating truly unpredictable digits. First, we experimentally demonstrated the fastest quantum random number generation scheme ever reported (at the time), using components from the telecommunications industry only. Up to 40 Gb/s were demonstrated to be possible using a pulsed scheme. We then moved towards building prototypes and testing them with partners in supercomputation and fundamental research. In particular, the devices developed during this thesis were used in the landmark loophole- free Bell test experiments of 2015. In the process of building the technology, we started a new research focus as an attempt to answer the following question: How do we know that the digits that we generate are really coming from the phase diffusion process that we trust? As a result, we introduced the randomness metrology methodology, which can be used to derive quantitative bounds on the quality of any physical random number generation device. Finally, we moved towards miniaturisation of the technology by leveraging techniques from the photonic integrated circuits technology industry. The first fully integrated quantum random number generator was demonstrated using a novel two-laser scheme on an Indium Phosphide platform. In addition, we also demonstrated the integration of part of the technology on a Silicon Photonics platform, opening the door towards manufacturing in the most advanced semiconductor industry.L’aleatorietat és un dels temes més intrigants, inspiradors i debatuts al llarg de la història. És un concepte que sorgeix quan ens preguntem sobre la nostra pròpia existència i de per què som com som. Tenim freewill? És l’evolució resultat de l’atzar? L’aleatorietat és també un tema que sorgeix quan intentem entendre la nostra relació amb l’univers mateix. Per què estem aquí? Quan o com va començar tot això? És l’univers una màquina determinista o hi ha cabuda per a l’atzar? Sorprenentment, l’aleatorietat també juga un paper crucial en l’era de la informació i la tecnologia. Els nombres aleatoris es fan servir en protocols de comunicació com Ethernet, en algoritmes de classificació i processat com Page Rank. També usem l’aleatorietat en els mètodes Monte Carlo, que s’utilitzen en els àmbits de la física, la biologia, la química, les finances o les matemàtiques. Malgrat això, l’aplicació més icònica per als nombres aleatoris la trobem en el camp de la criptografia o ciber-seguretat. Els nombres aleatoris es fan servir per a generar claus criptogràfiques, l’element bàsic que proporciona la seguretat i privacitat a les nostres comunicacions. Aquesta tesi parteix de la següent pregunta fonamental: Existeix l’aleatorietat a la fotònica? En cas afirmatiu, com podem extreure-la i ferla accessible a tothom? Per a afrontar aquestes dues preguntes, s’han combinat eines des de la física fonamental fins a l’enginyeria. La tesi parteix d’un estudi detallat del procés de difusió de fase en làsers semiconductors i de com aplicar aquest procés per a la generació de nombres aleatoris. A diferència d’altres processos físics basats en lleis deterministes de la natura, la difusió de fase té un origen purament quàntic, i per tant, és una font ideal per a generar nombres aleatoris. Primerament, i fent servir aquest procés de difusió de fase, vam crear el generador quàntic de nombres aleatoris més ràpid mai implementat (en aquell moment) fent servir, únicament, components de la indústria de les telecomunicacions. Més de 40 Gb/s van ser demostrats fent servir un esquema de làser polsat. Posteriorment, vam construir diversos prototips que van ser testejats en aplicacions de ciència fonamental i supercomputació. En particular, alguns dels prototips desenvolupats en aquesta tesi van ser claus en els famosos experiments loophole-free Bell tests realitzats l’any 2015. En el procés de construir aquests prototips, vam iniciar una nova línia de recerca per a intentar contestar una nova pregunta: Com sabem si els nombres aleatoris que generem realment sorgeixen del procés de difusió de fase, tal com nosaltres creiem? Com a resultat, vam introduir una nova metodologia, la metrologia de l’aleatorietat. Aquesta es pot fer servir per a derivar límits quantificables sobre la qualitat de qualsevol dispositiu de generació de nombres aleatoris físic. Finalment, ens vam moure en la direcció de la miniaturització de la tecnologia utilitzant tècniques de la indústria de la fotònica integrada. En particular, vam demostrar el primer generador de nombres aleatoris quàntic totalment integrat, fent servir un esquema de dos làsers en un xip de Fosfur d’Indi. En paral·lel, també vam demostrar la integració d’una part del dispositiu emprant tecnologia de Silici, obrint les portes, per tant, a la producció a gran escala a través de la indústria més avançada de semiconductors.La aleatoriedad es uno de los temas más intrigantes, inspiradores y debatidos a lo largo de la historia. Es un concepto que surge cuando nos preguntamos sobre nuestra propia existencia y de por qué somos como somos. ¿Tenemos libre albedrío? ¿Es la evolución resultado del azar? La aleatoriedad es también un tema que surge cuando intentamos entender nuestra relación con el universo. ¿Por qué estamos aquí? ¿Cuándo y cómo empezó todo esto? ¿Es el universo una máquina determinista o existe espacio para el azar? Sorprendentemente, la aleatoriedad también juega un papel crucial en la era de la información y la tecnología. Los números aleatorios se usan en protocolos de comunicación como Ethernet, y en algoritmos de clasificación y procesado como Page Rank. También la utilizamos en los métodos Monte Carlo, que sirven en los ámbitos de la física, la biología, la química, las finanzas o las matemáticas. Sin embargo, la aplicación más icónica para los números aleatorios la encontramos en el campo de la criptografía y la ciberseguridad. Aquí, los números aleatorios se usan para generar claves criptográficas, proporcionando el elemento básico para dotar a nuestras comunicaciones de seguridad y privacidad. En esta tesis partimos de la siguiente pregunta fundamental: ¿Existe la aleatoriedad en la fotónica? En caso afirmativo, ¿Cómo podemos extraerla y hacerla accesible a todo el mundo? Para afrontar estas dos preguntas, se han combinado herramientas desde la física fundamental hasta la ingeniería. La tesis parte de un estudio detallado del proceso de difusión de fase en láseres semiconductores y de cómo aplicar este proceso para la generación de números aleatorios. A diferencia de otros procesos físicos basados en leyes deterministas de la naturaleza, la difusión de fase tiene un origen puramente cuántico y, por lo tanto, es una fuente ideal para generar números aleatorios. Primeramente, y utilizando este proceso de difusión de fase, creamos el generador cuántico de números aleatorios más rápido nunca implementado (en ese momento) utilizando únicamente componentes de la industria de las telecomunicaciones. Más de 40 Gb/s fueron demostrados utilizando un esquema de láser pulsado. Posteriormente, construimos varios prototipos que fueron testeados en aplicaciones de ciencia fundamental y supercomputación. En particular, algunos de los prototipos desarrollados en esta tesis fueron claves en los famosos experimentos Loophole-free Bell tests realizados en el 2015. En el proceso de construir estos prototipos, iniciamos una nueva línea de investigación para intentar dar respuesta a una nueva pregunta: ¿Cómo sabemos si los números aleatorios que generamos realmente surgen del proceso de difusión de fase, tal y como nosotros creemos? Como resultado introdujimos una nueva metodología, la metrología de la aleatoriedad. Esta se puede usar para derivar límites cuantificables sobre la calidad de cualquier dispositivo de generación de números aleatorios físico. Finalmente, nos movimos en la dirección de la miniaturización de la tecnología utilizando técnicas de la industria de la fotónica integrada. En particular, creamos el primer generador de números aleatorios cuántico totalmente integrado utilizando un esquema de dos láseres en un chip de Fosfuro de Indio. En paralelo, también demostramos la integración de una parte del dispositivo utilizando tecnología de Silicio, abriendo las puertas, por tanto, a la producción a gran escala a través de la industria más avanzada de semiconductores.Award-winningPostprint (published version

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity

    Proceedings of the XXVth TELEMAC-MASCARET User Conference, 9th to 11th October 2018, Norwich

    Get PDF
    corecore