170 research outputs found

    Lattice-based Direct Anonymous Attestation (LDAA)

    Get PDF
    The Cloud-Edges (CE) framework, wherein small groups of Internet of Things(IoT) devices are serviced by local edge devices, enables a more scalable solution to IoT networks. The trustworthiness of the network may be ensured with Trusted Platform Modules (TPMs). This small hardware chip is capable of measuring and reporting a representation of the state of an IoT device. When connecting to a network, the IoT platform might have its state signed by the TPM in an anonymous way to prove both its genuineness and secure state through the Direct Anonymous Attestation (DAA) protocol. Currently standardised DAA schemes have their security supported on the factoring and discrete logarithm problems. Should a quantum-computer become available in the next few decades, these schemes will be broken. There is therefore a need to start developing a post-quantum DAA protocol. This paper presents a Lattice-based DAA (LDAA) scheme to meet this requirement. The security of this scheme is proved in the Universally Composable (UC) security model under the hardness assumptions of the Ring Inhomogeneous Short Integer Solution (Ring-ISIS) and Ring Learning With Errors (Ring-LWE) problems. Compared to the only other post-quantum DAA scheme available in related art, the storage requirements of the TPM are reduced twofold and the signature sizes 5 times. Moreover, experimental results show that the signing and verification operations are accelerated 1.1 and 2.0 times, respectively

    Secure migration of WebAssembly-based mobile agents between secure enclaves

    Get PDF
    Cryptography and security protocols are today commonly used to protect data at-rest and in-transit. In contrast, protecting data in-use has seen only limited adoption. Secure data transfer methods employed today rarely provide guarantees regarding the trustworthiness of the software and hardware at the communication endpoints. The field of study that addresses these issues is called Trusted or Confidential Computing and relies on the use of hardware-based techniques. These techniques aim to isolate critical data and its processing from the rest of the system. More specifically, it investigates the use of hardware isolated Secure Execution Environments (SEEs) where applications cannot be tampered with during operation. Over the past few decades, several implementations of SEEs have been introduced, each based on a different hardware architecture. However, lately, the trend is to move towards architecture-independent SEEs. As part of this, Huawei research project is developing a secure enclave framework that enables secure execution and migration of applications (mobile agents), regardless of the underlying architecture. This thesis contributes to the development of the framework by participating in the design and implementation of a secure migration scheme for the mobile agents. The goal is a scheme wherein it is possible to transfer the mobile agent without compromising the security guarantees provided by SEEs. Further, the thesis also provides performance measurements of the migration scheme implemented in a proof of concept of the framework

    QuantumCharge: Post-Quantum Cryptography for Electric Vehicle Charging

    Get PDF
    ISO 15118 enables charging and billing of Electric Vehicles (EVs) without user interaction by using locally installed cryptographic credentials that must be secure over the long lifetime of vehicles. In the dawn of quantum computers, Post-Quantum Cryptography (PQC) needs to be integrated into the EV charging infrastructure. In this paper, we propose QuantumCharge, a PQC extension for ISO 15118, which includes concepts for migration, crypto-agility, verifiable security, and the use of PQC-enabled hardware security modules. Our prototypical implementation and the practical evaluation demonstrate the feasibility, and our formal analysis shows the security of QuantumCharge, which thus paves the way for secure EV charging infrastructures of the future

    Critical Perspectives on Provable Security: Fifteen Years of Another Look Papers

    Get PDF
    We give an overview of our critiques of “proofs” of security and a guide to our papers on the subject that have appeared over the past decade and a half. We also provide numerous additional examples and a few updates and errata

    A Lattice-based Enhanced Privacy ID

    Get PDF
    The Enhanced Privacy ID (EPID) scheme is currently used for hardware enclave attestation by an increasingly large number of platforms that implement Intel Software Guard Extensions (SGX). However, the scheme currently deployed by Intel is supported on Elliptic Curve Cryptography (ECC), and will become insecure should a large quantum computer become available. As part of National Institute of Standards and Technology (NIST)\u27s effort for the standardisation of post-quantum cryptography, there has been a great boost in research on lattice-based cryptography. As this type of cryptography is more widely used, one expects that hardware platforms start integrating specific instructions that accelerate its execution. In this article, a new EPID scheme is proposed, supported on lattice primitives, that may benefit not only from future research developments in post-quantum cryptography, but also from instructions that may extend Intel\u27s Instruction Set Architecture (ISA) in the future. This paper presents a new security model for EPID in the Universal Composability (UC) framework. The proposed Lattice-based EPID (LEPID) scheme is proved secure under the new model. Experimentally compared with a closely related Lattice-based Direct Anonymous Attestation (DAA) (LDAA) scheme from related art, it is shown that the private-key size is reduced 1.5 times, and that signature and verification times are sped up up to 1.4 and 1.1 times, respectively, for the considered parameters, when LEPID is compared with LDAA. Moreover, the signature size compares favourably to LDAA for small and medium-sized communities

    Virtualized Reconfigurable Resources and Their Secured Provision in an Untrusted Cloud Environment

    Get PDF
    The cloud computing business grows year after year. To keep up with increasing demand and to offer more services, data center providers are always searching for novel architectures. One of them are FPGAs, reconfigurable hardware with high compute power and energy efficiency. But some clients cannot make use of the remote processing capabilities. Not every involved party is trustworthy and the complex management software has potential security flaws. Hence, clients’ sensitive data or algorithms cannot be sufficiently protected. In this thesis state-of-the-art hardware, cloud and security concepts are analyzed and com- bined. On one side are reconfigurable virtual FPGAs. They are a flexible resource and fulfill the cloud characteristics at the price of security. But on the other side is a strong requirement for said security. To provide it, an immutable controller is embedded enabling a direct, confidential and secure transfer of clients’ configurations. This establishes a trustworthy compute space inside an untrusted cloud environment. Clients can securely transfer their sensitive data and algorithms without involving vulnerable software or a data center provider. This concept is implemented as a prototype. Based on it, necessary changes to current FPGAs are analyzed. To fully enable reconfigurable yet secure hardware in the cloud, a new hybrid architecture is required.Das Geschäft mit dem Cloud Computing wächst Jahr für Jahr. Um mit der steigenden Nachfrage mitzuhalten und neue Angebote zu bieten, sind Betreiber von Rechenzentren immer auf der Suche nach neuen Architekturen. Eine davon sind FPGAs, rekonfigurierbare Hardware mit hoher Rechenleistung und Energieeffizienz. Aber manche Kunden können die ausgelagerten Rechenkapazitäten nicht nutzen. Nicht alle Beteiligten sind vertrauenswürdig und die komplexe Verwaltungssoftware ist anfällig für Sicherheitslücken. Daher können die sensiblen Daten dieser Kunden nicht ausreichend geschützt werden. In dieser Arbeit werden modernste Hardware, Cloud und Sicherheitskonzept analysiert und kombiniert. Auf der einen Seite sind virtuelle FPGAs. Sie sind eine flexible Ressource und haben Cloud Charakteristiken zum Preis der Sicherheit. Aber auf der anderen Seite steht ein hohes Sicherheitsbedürfnis. Um dieses zu bieten ist ein unveränderlicher Controller eingebettet und ermöglicht eine direkte, vertrauliche und sichere Übertragung der Konfigurationen der Kunden. Das etabliert eine vertrauenswürdige Rechenumgebung in einer nicht vertrauenswürdigen Cloud Umgebung. Kunden können sicher ihre sensiblen Daten und Algorithmen übertragen ohne verwundbare Software zu nutzen oder den Betreiber des Rechenzentrums einzubeziehen. Dieses Konzept ist als Prototyp implementiert. Darauf basierend werden nötige Änderungen von modernen FPGAs analysiert. Um in vollem Umfang eine rekonfigurierbare aber dennoch sichere Hardware in der Cloud zu ermöglichen, wird eine neue hybride Architektur benötigt

    Sustainable Trusted Computing: A Novel Approach for a Flexible and Secure Update of Cryptographic Engines on a Trusted Platform Module

    Get PDF
    Trusted computing is gaining an increasing acceptance in the industry and finding its way to cloud computing. With this penetration, the question arises whether the concept of hardwired security modules will cope with the increasing sophistication and security requirements of future IT systems and the ever expanding threats and violations. So far, embedding cryptographic hardware engines into the Trusted Platform Module (TPM) has been regarded as a security feature. However, new developments in cryptanalysis, side-channel analysis, and the emergence of novel powerful computing systems, such as quantum computers, can render this approach useless. Given that, the question arises: Do we have to throw away all TPMs and lose the data protected by them, if someday a cryptographic engine on the TPM becomes insecure? To address this question, we present a novel architecture called Sustainable Trusted Platform Module (STPM), which guarantees a secure update of the TPM cryptographic engines without compromising the system’s trustworthiness. The STPM architecture has been implemented as a proof-of-concept on top of a Xilinx Virtex-5 FPGA platform, demonstrating the test cases with an update of the fundamental hash and asymmetric engines of the TPM
    • …
    corecore