382 research outputs found

    Cryptanalysis of a Cayley Hash Function Based on Affine Maps in one Variable over a Finite Field

    Full text link
    Cayley hash functions are cryptographic hashes constructed from Cayley graphs of groups. The hash function proposed by Shpilrain and Sosnovski (2016), based on linear functions over a finite field, was proven insecure. This paper shows that the proposal by Ghaffari and Mostaghim (2018) that uses the Shpilrain and Sosnovski's hash in its construction is also insecure. We demonstrate its security vulnerability by constructing collisions.Comment: 10 page

    Navigating in the Cayley graph of SL2(Fp)SL_2(F_p) and applications to hashing

    Get PDF
    Cayley hash functions are based on a simple idea of using a pair of (semi)group elements, AA and BB, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the (semi)group. In this paper, we focus on hashing with 2×22 \times 2 matrices over FpF_p. Since there are many known pairs of 2×22 \times 2 matrices over ZZ that generate a free monoid, this yields numerous pairs of matrices over FpF_p, for a sufficiently large prime pp, that are candidates for collision-resistant hashing. However, this trick can "backfire", and lifting matrix entries to ZZ may facilitate finding a collision. This "lifting attack" was successfully used by Tillich and Z\'emor in the special case where two matrices AA and BB generate (as a monoid) the whole monoid SL2(Z+)SL_2(Z_+). However, in this paper we show that the situation with other, "similar", pairs of matrices from SL2(Z)SL_2(Z) is different, and the "lifting attack" can (in some cases) produce collisions in the group generated by AA and BB, but not in the positive monoid. Therefore, we argue that for these pairs of matrices, there are no known attacks at this time that would affect security of the corresponding hash functions. We also give explicit lower bounds on the length of collisions for hash functions corresponding to some particular pairs of matrices from SL2(Fp)SL_2(F_p).Comment: 10 page

    Cayley Graphs of Semigroups and Applications to Hashing

    Full text link
    In 1994, Tillich and Zemor proposed a scheme for a family of hash functions that uses products of matrices in groups of the form SL2(F2n)SL_2(F_{2^n}). In 2009, Grassl et al. developed an attack to obtain collisions for palindromic bit strings by exploring a connection between the Tillich-Zemor functions and maximal length chains in the Euclidean algorithm for polynomials over F2F_2. In this work, we present a new proposal for hash functions based on Cayley graphs of semigroups. In our proposed hash function, the noncommutative semigroup of linear functions under composition is considered as platform for the scheme. We will also discuss its efficiency, pseudorandomness and security features. Furthermore, we generalized the Fit-Florea and Matula\u27s algorithm (2004) that finds the discrete logarithm in the multiplicative group of integers modulo 2k2^k by establishing a connection between semi-primitive roots modulo 2k2^k where k≥3k\geq 3 and the logarithmic base used in the algorithm

    Ramanujan graphs in cryptography

    Get PDF
    In this paper we study the security of a proposal for Post-Quantum Cryptography from both a number theoretic and cryptographic perspective. Charles-Goren-Lauter in 2006 [CGL06] proposed two hash functions based on the hardness of finding paths in Ramanujan graphs. One is based on Lubotzky-Phillips-Sarnak (LPS) graphs and the other one is based on Supersingular Isogeny Graphs. A 2008 paper by Petit-Lauter-Quisquater breaks the hash function based on LPS graphs. On the Supersingular Isogeny Graphs proposal, recent work has continued to build cryptographic applications on the hardness of finding isogenies between supersingular elliptic curves. A 2011 paper by De Feo-Jao-Pl\^{u}t proposed a cryptographic system based on Supersingular Isogeny Diffie-Hellman as well as a set of five hard problems. In this paper we show that the security of the SIDH proposal relies on the hardness of the SIG path-finding problem introduced in [CGL06]. In addition, similarities between the number theoretic ingredients in the LPS and Pizer constructions suggest that the hardness of the path-finding problem in the two graphs may be linked. By viewing both graphs from a number theoretic perspective, we identify the similarities and differences between the Pizer and LPS graphs.Comment: 33 page

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Some applications of noncommutative groups and semigroups to information security

    Full text link
    We present evidence why the Burnside groups of exponent 3 could be a good candidate for a platform group for the HKKS semidirect product key exchange protocol. We also explore hashing with matrices over SL2(Fp), and compute bounds on the girth of the Cayley graph of the subgroup of SL2(Fp) for specific generators A, B. We demonstrate that even without optimization, these hashes have comparable performance to hashes in the SHA family
    • …
    corecore