2,688 research outputs found

    Science Pipelines for the Square Kilometre Array

    Full text link
    The Square Kilometre Array (SKA) will be both the largest radio telescope ever constructed and the largest Big Data project in the known Universe. The first phase of the project will generate on the order of 5 zettabytes of data per year. A critical task for the SKA will be its ability to process data for science, which will need to be conducted by science pipelines. Together with polarization data from the LOFAR Multifrequency Snapshot Sky Survey (MSSS), we have been developing a realistic SKA-like science pipeline that can handle the large data volumes generated by LOFAR at 150 MHz. The pipeline uses task-based parallelism to image, detect sources, and perform Faraday Tomography across the entire LOFAR sky. The project thereby provides a unique opportunity to contribute to the technological development of the SKA telescope, while simultaneously enabling cutting-edge scientific results. In this paper, we provide an update on current efforts to develop a science pipeline that can enable tight constraints on the magnetised large-scale structure of the Universe.Comment: Published in Galaxies, as part of a Special Issue on The Power of Faraday Tomograph

    Next Generation Very Large Array Memo No. 6, Science Working Group 1: The Cradle of Life

    Get PDF
    This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Five of them are highlighted as possible Key Science Projects: (1) Resolving the density structure and dynamics of the youngest HII regions and high-mass protostellar jets, (2) Unveiling binary/multiple protostars at higher resolution, (3) Mapping planet formation regions in nearby disks on scales down to 1 AU, (4) Studying the formation of complex molecules, and (5) Deep atmospheric mapping of giant planets in the Solar System. For each of these projects, we discuss the scientific importance and feasibility. The results presented here should be considered as the beginning of a more in-depth analysis of the science enabled by such a facility, and are by no means complete or exhaustive.Comment: 51 pages, 12 figures, 1 table. For more information visit https://science.nrao.edu/futures/ngvl

    Opportunities for asteroid retrieval missions

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to uncover the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this chapter, we analyze the possibility of retrieving entire objects from accessible heliocentric orbits and moving them into the Earth’s neighbourhood. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy transfers for asteroidal material. With the objective to minimise transfer costs, a global search of impulsive transfers connecting the unperturbed asteroid’s orbit with the stable manifold phase of the transfer is performed. A catalogue of asteroid retrieval opportunities of currently known NEOs is presented here. Despite the highly incomplete census of very small asteroids, the catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. All, but one, of these objects have an expected size in the range that can be met by current propulsion technologies. Moreover, the methodology proposed represents a robust search for future retrieval candidates that can be automatically applied to a growing survey of NEOs

    Galactic-scale macro-engineering: Looking for signs of other intelligent species, as an exercise in hope for our own

    Full text link
    If we consider Big History as simply 'our' example of the process of cosmic evolution playing out, then we can seek to broaden our view of our possible fate as a species by asking questions about what paths or trajectories other species' own versions of Big History might take or have taken. This paper explores the broad outlines of possible scenarios for the evolution of long-lived intelligent engineering species---scenarios which might have been part of another species' own Big History story, or which may yet lie ahead in our own distant future. A sufficiently long-lived engineering-oriented species may decide to undertake a program of macro-engineering projects that might eventually lead to a re-engineered galaxy so altered that its artificiality may be detectable from Earth. We consider activities that lead ultimately to a galactic structure consisting of a central inner core surrounded by a more distant ring of stars separated by a relatively sparser 'gap', where star systems and stellar materials may have been removed, 'lifted' or turned into Dyson Spheres. When one looks to the sky, one finds that such galaxies do indeed exist---including the beautiful ringed galaxy known as 'Hoag's Object' (PGC 54559) in the constellation Serpens. This leads us to pose the question: Is Hoag's Object an example of galaxy-scale macro-engineering? And this suggests a program of possible observational activities and theoretical explorations, several of which are presented here, that could be carried out in order to begin to investigate this beguiling question.Comment: 17 pages. Published in: Teaching and Researching Big History: Exploring a New Scholarly Field; L. Grinin, D. Baker, E. Quaedackers and A. Korotayev (eds). Uchitel Publ House, Volgograd, Russia, 2014, Chapter 14, pp. 283-304. ISBN: 978-5-7057-4027-

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    Advanced Aspects of the Galactic Habitability

    Full text link
    Context. Astrobiological evolution of the Milky Way (or the shape of its "astrobiological landscape") has emerged as one of the key research topics in recent years. In order to build precise, quantitative models of the Galactic habitability, we need to account for two opposing tendencies of life and intelligence in the most general context: the tendency to spread to all available ecological niches (conventionally dubbed "colonization") and the tendency to succumb to various types of existential catastrophes ("catastrophism"). These evolutionary tendencies have become objects of study in fields such as ecology, macroevolution, risk analysis, and futures studies, while a serious astrobiological treatment has been lacking so far. Aims. Our aim is to numerically investigate the dynamics of opposed processes of expansion (panspermia, colonization) and extinction (catastrophic mechanisms) of life in the Galaxy. Methods. We employ a new type of numerical simulation based on 1D probabilistic cellular automaton with very high temporal resolution, in order to study astrobiological dynamics. Results. While the largest part of the examined parameter space shows very low habitability values, as expected, the remaining part has some observationally appealing features that imply, among other things, a reduction in the amount of fine-tuning necessary for resolving the Fermi paradox. Conclusions. Advanced aspects of Galactic habitability are amenable to precision studies using massive parallel computer simulations. There are regions of parameter space corresponding to a quasi-stationary state satisfying observable constraints and possessing viable SETI targets.Comment: Language corrected version, to appear in Astronomy & astrophysic
    corecore