15,685 research outputs found

    Clamped closed-loop flux guides for power line inductive harvesting

    Get PDF
    Inductive harvesting from existing power lines in vehicle, industrial and infrastructure environments offers an opportunity for providing energy autonomy to sensors in a wide range of environments with high sensing interest. Flux funnelling has been shown to improve the power density of such devices by over an order of magnitude. The requirement for retrofitting onto existing power lines leads to a demand for detachable magnetic core interfaces, which introduce gaps and uncertainty to device performance. In this paper, an inductive energy harvesting device design that addresses this challenge is introduced. The design allows the interfaces to be internal to the device housing. Repeatable fixing, with reduced sensitivity to installation practicalities and controllable force is achieved by a screw-pressing mechanism, and the employment of a hard polyoxymethylene housing material. This method is utilized in an inductive power-line prototype, demonstrating power output up to 260 mW from a 40 A RMS, 500 Hz current, emulating aircraft power lines

    Power supply based on inductive harvesting from structural currents

    Get PDF
    Monitoring infrastructure offers functional optimisation, lower maintenance cost, security, stability and data analysis benefits. Sensor nodes require some level of energy autonomy for reliable and cost-effective operation, and energy harvesting methods have been developed in the last two decades for this purpose. Here, a power supply that collects, stores and delivers regulated power from the stray magnetic field of currentcarrying structures is presented. In cm-scale structures the skin effect concentrates current at edges at frequencies even below 1 kHz. A coil-core inductive transducer is designed. A fluxfunnelling soft magnetic core shape is used, multiplying power density by the square of funnelling ratio. A power management circuit combining reactance cancellation, voltage doubling, rectification, super-capacitor storage and switched inductor voltage boosting and regulation is introduced. The power supply is characterised in house and on a full-size industrial setup, demonstrating a power reception density of 0.36 mW/cm3, 0.54 mW/cm3 and 0.73 mW/cm3 from a 25 A RMS structural current at 360 Hz, 500 Hz and 800 Hz respectively, corresponding to the frequency range of aircraft currents. The regulated output is tested under various loads and cold starting is demonstrated. The introduced method may enable power autonomy to wireless sensors deployed in current-carrying infrastructure

    Nuclear power plants for mobile applications

    Get PDF
    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants

    Image interpretation for a multilevel land use classification system

    Get PDF
    The potential use is discussed of three remote sensors for developing a four level land use classification system. Three types of imagery for photointerpretation are presented: ERTS-1 satellite imagery, high altitude photography, and medium altitude photography. Suggestions are given as to which remote sensors and imagery scales may be most effectively employed to provide data on specific types of land use

    Inductive power line harvester with flux guidance for self-powered sensors

    Get PDF
    Self-powered sensors are expected to enable new large-scale deployment and location access capabilities for sensor systems. Energy harvesting devices have been shown to provide adequate power densities but their dependence on very specific environmental conditions restricts their applicability. Energy harvesting from power line infrastructure offers an architecture for addressing this challenge, because such infrastructure is widely available. In this paper an inductive power line harvester concept is presented, based on a flux concentration approach adapted to a closed-loop core geometry. Flux concentration is studied by simulation, showing a 26% flux increase using a 1:3 geometrical concentration ratio in a closed-loop core. A 20×20×25 mm prototype with a U-shaped soft-core sheet and a 200-turn Cu coil around a 5 mm diameter, 20 mm long soft-core rod is introduced. The total device volume is 9.1 cm 3 . Characterization results on a power line evaluation setup for currents up to 35 A RMS and a 50 Hz – 1 kHz range are presented. Power between 2.2 mW (50 Hz) and 233 mW (1 kHz) is demonstrated on an ohmic load, from a 10 A RMS power line current, employing impedance matching with reactance cancellation. The corresponding power densities are 0.24 mW/cm 3 and 25 mW/cm 3 respectively, per total device volume. This performance is adequate for enabling self-powered wireless sensor networks installed along power distribution lines

    Acoustic energy transmission in cast iron pipelines

    Get PDF
    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure
    • …
    corecore