114,791 research outputs found

    DESIGN OF RELIABLE AND SUSTAINABLE WIRELESS SENSOR NETWORKS: CHALLENGES, PROTOCOLS AND CASE STUDIES

    Get PDF
    Integrated with the function of sensing, processing, and wireless communication, wireless sensors are attracting strong interest for a variety of monitoring and control applications. Wireless sensor networks (WSNs) have been deployed for industrial and remote monitoring purposes. As energy shortage is a worldwide problem, more attention has been placed on incorporating energy harvesting devices in WSNs. The main objective of this research is to systematically study the design principles and technical approaches to address three key challenges in designing reliable and sustainable WSNs; namely, communication reliability, operation with extremely low and dynamic power sources, and multi-tier network architecture. Mathematical throughput models, sustainable WSN communication strategies, and multi-tier network architecture are studied in this research to address these challenges, leading to protocols for reliable communication, energy-efficient operation, and network planning for specific application requirements. To account for realistic operating conditions, the study has implemented three distinct WSN testbeds: a WSN attached to the high-speed rotating spindle of a turning lathe, a WSN powered by a microbial fuel cell based energy harvesting system, and a WSN with a multi-tier network architecture. With each testbed, models and protocols are extracted, verified and analyzed. Extensive research has studied low power WSNs and energy harvesting capabilities. Despite these efforts, some important questions have not been well understood. This dissertation addresses the following three dimensions of the challenge. First, for reliable communication protocol design, mathematical throughput or energy efficiency estimation models are essential, yet have not been investigated accounting for specific application environment characteristics and requirements. Second, for WSNs with energy harvesting power sources, most current networking protocols do not work efficiently with the systems considered in this dissertation, such as those powered by extremely low and dynamic energy sources. Third, for multi-tier wireless network system design, routing protocols that are adaptive to real-world network conditions have not been studied. This dissertation focuses on these questions and explores experimentally derived mathematical models for designing protocols to meet specific application requirements. The main contributions of this research are 1) for industrial wireless sensor systems with fast-changing but repetitive mobile conditions, understand the performance and optimal choice of reliable wireless sensor data transmission methods, 2) for ultra-low energy harvesting wireless sensor devices, design an energy neutral communication protocol, and 3) for distributed rural wireless sensor systems, understand the efficiency of realistic routing in a multi-tier wireless network. Altogether, knowledge derived from study of the systems, models, and protocols in this work fuels the establishment of a useful framework for designing future WSNs

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems

    Get PDF
    This study focuses on the design and wind tunnel testing of a high efficiency Energy Harvesting device, based on piezoelectric materials, with possible applications for the sustainability of smart buildings, structures and infrastructures. The development of the device was supported by ESA (the European Space Agency) under a program for the space technology transfer in the period 2014-2016. The EH device harvests the airflow inside Heating, Ventilation and Air Conditioning (HVAC) systems, using a piezoelectric component and an appropriate customizable aerodynamic appendix or fin that takes advantage of specific airflow phenomena (vortex shedding and galloping), and can be implemented for optimizing the energy consumption inside buildings. Focus is given on several relevant aspects of wind tunnel testing: different configurations for the piezoelectric bender (rectangular, cylindrical and T-shaped) are tested and compared, and the effective energy harvesting potential of a working prototype device is assessed

    E-Learning and microformats: a learning object harvesting model and a sample application

    Get PDF
    In order to support interoperability of learning tools and reusability of resources, this paper introduces a framework for harvesting learning objects from web-based content. Therefore, commonly-known web technologies are examined with respect to their suitability for harvesting embedded meta-data. Then, a lightweight application profile and a microformat for learning objects are proposed based on well-known learning object metadata standards. Additionally, we describe a web service which utilizes XSL transformation (GRDDL) to extract learning objects from different web pages, and provide a SQI target as a retrieval facility using a more complex query language called SPARQL. Finally, we outline the applicability of our framework on the basis of a search client employing the new SQI service for searching and retrieving learning objects

    Power-Adaptive Computing System Design for Solar-Energy-Powered Embedded Systems

    Get PDF

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    HaIRST: Harvesting Institutional Resources in Scotland Testbed. Final Project Report

    Get PDF
    The HaIRST project conducted research into the design, implementation and deployment of a pilot service for UK-wide access of autonomously created institutional resources in Scotland, the aim being to investigate and advise on some of the technical, cultural, and organisational requirements associated with the deposit, disclosure, and discovery of institutional resources in the JISC Information Environment. The project involved a consortium of Scottish higher and further education institutions, with significant assistance from the Scottish Library and Information Council. The project investigated the use of technologies based on the Open Archives Initiative (OAI), including the implementation of OAI-compatible repositories for metadata which describe and link to institutional digital resources, the use of the OAI protocol for metadata harvesting (OAI-PMH) to automatically copy the metadata from multiple repositories to a central repository, and the creation of a service to search and identify resources described in the central repository. An important aim of the project was to identify issues of metadata interoperability arising from the requirements of individual institutional repositories and their impact on services based on the aggregation of metadata through harvesting. The project also sought to investigate issues in using these technologies for a wide range of resources including learning, teaching and administrative materials as well as the research and scholarly communication materials considered by many of the other projects in the JISC Focus on Access to Institutional Resources (FAIR) Programme, of which HaIRST was a part. The project tested and implemented a number of open source software packages supporting OAI, and was successful in creating a pilot service which provides effective information retrieval of a range of resources created by the project consortium institutions. The pilot service has been extended to cover research and scholarly communication materials produced by other Scottish universities, and administrative materials produced by a non-educational institution in Scotland. It is an effective testbed for further research and development in these areas. The project has worked extensively with a new OAI standard for 'static repositories' which offers a low-barrier, low-cost mechanism for participation in OAI-based consortia by smaller institutions with a low volume of resources. The project identified and successfully tested tools for transforming pre-existing metadata into a format compliant with OAI standards. The project identified and assessed OAI-related documentation in English from around the world, and has produced metadata for retrieving and accessing it. The project created a Web-based advisory service for institutions and consortia. The OAI Scotland Information Service (OAISIS) provides links to related standards, guidance and documentation, and discusses the findings of HaIRST relating to interoperability and the pilot harvesting service. The project found that open source packages relating to OAI can be installed and made to interoperate to create a viable method of sharing institutional resources within a consortium. HaIRST identified issues affecting the interoperability of shared metadata and suggested ways of resolving them to improve the effectiveness and efficiency of shared information retrieval environments based on OAI. The project demonstrated that application of OAI technologies to administrative materials is an effective way for institutions to meet obligations under Freedom of Information legislation

    Facilitating the take-up of new HCI practices: a ‘diffusion of innovations’ perspective

    Get PDF
    The workshop Made for Sharing: HCI Stories of Transfer, Triumph & Tragedy focuses on collecting cases in which practitioners have used their HCI methods in new contexts. For analyzing the collected body of cases we propose to apply a framework inspired by the Diffusion of Innovations approach which focuses on what facilitates the adoption, re-invention and implementation of new practices in social systems
    • 

    corecore