918 research outputs found

    Engaging the Virtual Landscape: Toward an Experiential Approach to Exploring Place Through a Spatial Experience Engine

    Get PDF
    The utilization of Geographic Information Systems (GIS) and other geospatial technologies in historical inquiry and the humanities has led to a number of projects that are exploring digital representations of past landscapes and places as platforms for synthesizing and representing historical and geographic information. Recent advancements in geovisualization, immersive environments, and virtual reality offer the opportunity to generate digital representations of cultural and physical landscapes, and embed those virtual landscapes with information and knowledge from multiple GIS sources. The development of these technologies and their application to historical research has opened up new opportunities to synthesize historical records from disparate sources, represent these sources spatially in digital form, and to embed the qualitative data into those spatial representations that is often crucial to historical interpretation.;This dissertation explores the design and development of a serious game-based virtual engine, the Spatial Experience Engine (SEE), that provides an immersive and interactive platform for an experiential approach to exploring and understanding place. Through a case study focused on the late nineteenth-century urban landscape of Morgantown, West Virginia, the implementation of the SEE discussed in this dissertation demonstrates a compelling platform for building and exploring complex, virtual landscapes, enhanced with spatialized information and multimedia. The SEE not only provides an alternative approach for scholars exploring the spatial turn in history and a humanistic, experiential analysis of historical places, but its flexibility and extensibility also offer the potential for future implementations to explore a wide range of research questions related to the representation of geographic information within an immersive and interactive virtual landscape

    The Immersive Mental Rotations Test: Evaluating Spatial Ability in Virtual Reality

    Get PDF
    Advancements in extended reality (XR) have inspired new uses and users of advanced visualization interfaces, transforming geospatial data visualization and consumption by enabling interactive 3D geospatial data experiences in 3D. Conventional metrics (e.g., mental rotations test (MRT)) are often used to assess and predict the appropriateness of these visualizations without accounting for the effect the interface has on those metrics. We developed the Immersive MRT (IMRT) to evaluate the impact that virtual reality (VR) based visualizations and 3D virtual environments have on mental rotation performance. Consistent with previous work, the results of our pilot study suggest that mental rotation tasks are performed more accurately and rapidly with stereo 3D stimuli than with 2D images of those stimuli

    Artifact-Based Rendering: Harnessing Natural and Traditional Visual Media for More Expressive and Engaging 3D Visualizations

    Full text link
    We introduce Artifact-Based Rendering (ABR), a framework of tools, algorithms, and processes that makes it possible to produce real, data-driven 3D scientific visualizations with a visual language derived entirely from colors, lines, textures, and forms created using traditional physical media or found in nature. A theory and process for ABR is presented to address three current needs: (i) designing better visualizations by making it possible for non-programmers to rapidly design and critique many alternative data-to-visual mappings; (ii) expanding the visual vocabulary used in scientific visualizations to depict increasingly complex multivariate data; (iii) bringing a more engaging, natural, and human-relatable handcrafted aesthetic to data visualization. New tools and algorithms to support ABR include front-end applets for constructing artifact-based colormaps, optimizing 3D scanned meshes for use in data visualization, and synthesizing textures from artifacts. These are complemented by an interactive rendering engine with custom algorithms and interfaces that demonstrate multiple new visual styles for depicting point, line, surface, and volume data. A within-the-research-team design study provides early evidence of the shift in visualization design processes that ABR is believed to enable when compared to traditional scientific visualization systems. Qualitative user feedback on applications to climate science and brain imaging support the utility of ABR for scientific discovery and public communication.Comment: Published in IEEE VIS 2019, 9 pages of content with 2 pages of references, 12 figure

    The lived user experience of virtual environments: Initial steps of a phenomenological analysis in a safety training setting

    Get PDF
    Virtual environments (VEs) are making their way into various sectors of life to enhance and support human activity, including learning. VEs have been used in various contexts for training, and in many cases they are designed to model or simulate - as accurately and authentically as possible - a specific work context. In striving for authenticity, visual and representative realism tends to receive most of the development input, despite of several studies that challenge its importance. New training avenues have raised the importance of rigorous phenomenological descriptions for a deeper understanding of user experience in the actual context of use. This paper reports the preliminary steps in a phenomenological analysis of how employees working in actual hazardous settings experience virtual safety training environments. Such open-ended research project can reveal new aspects of user experience that can advice the development and evaluation of human-computer interaction in digital technology-enhanced training contexts

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it

    Immersive analytics with abstract 3D visualizations: A survey

    Get PDF
    After a long period of scepticism, more and more publications describe basic research but also practical approaches to how abstract data can be presented in immersive environments for effective and efficient data understanding. Central aspects of this important research question in immersive analytics research are concerned with the use of 3D for visualization, the embedding in the immersive space, the combination with spatial data, suitable interaction paradigms and the evaluation of use cases. We provide a characterization that facilitates the comparison and categorization of published works and present a survey of publications that gives an overview of the state of the art, current trends, and gaps and challenges in current research

    FEASIBILITY STUDY OF USING VIRTUAL REALITY FOR INTERACTIVE AND IMMERSIVE SEMANTIC SEGMENTATION OF SINGLE TREE STEMS

    Get PDF
    Forest digitisation is one of the next major challenges to be tackled in the forestry domain. As a consequence of tremendous advances in 3D scanning technologies, broad areas of forest can be mapped in 3D dramatically faster than 20 years ago. Consequently, capturing 3D forest point clouds with the use of 3D sensing technologies – such as lidar – is becoming predominant in the field of forestry. However, the processing of 3D point clouds to bring semantics to the 3D forestry data – e.g. by linking them with ecological values – has not seen similar advancements. Therefore, in this paper we consider a novel approach based on the use of VR (Virtual reality) as a potential solution for deriving biodiversity from 3D point clouds acquired in the field. That is, we developed a VR labelling application to visualise forest point clouds and to perform the segmentation of several biodiversity components on tree stems e.g., mosses, lichens and bark pockets. Furthermore, the VR segmented point cloud was analysed with standard accuracy and precision metrics. Namely, the proposed VR application managed to achieve an IoU (Intersection over Union) rate value of 98.74% for the segmentation of bark pockets and resp. 93.71% for the moss and lichen classes. These encouraging results reinforce the potential for the proposed VR labelling method for other purposes in the future, for example for AI (Artificial Intelligence) training dataset creation

    PLUTO in Hand: Design and Implementation of a Location-Based Mobile Augmented Reality Application for Viewing Open Data

    Full text link
    Immersive mobile augmented reality (AR) technology has improved while geolocational data volume has grown. City governments can utilize this technology to share their geospatial data with the public, promoting smart city aims. This research describes the design and implementation of a novel open-source ARGIS application to view property tax lot information in New York City. This proof-of-technology demonstrates web-based AR can visualize location-based spatial data
    • …
    corecore