37 research outputs found

    Phase Diagram of a Strained Ferroelectric Nanowire

    Get PDF
    Ferroelectric materials manifest unique dielectric, ferroelastic, and piezoelectric properties. A targeted design of ferroelectrics at the nanoscale is not only of fundamental appeal but holds the highest potential for applications. Compared to two-dimensional nanostructures such as thin films and superlattices, one-dimensional ferroelectric nanowires are investigated to a much lesser extent. Here, we reveal a variety of the topological polarization states, particularly the vortex and helical chiral phases, in loaded ferroelectric nanowires, which enable us to complete the strain–temperature phase diagram of the one-dimensional ferroelectrics. These phases are of prime importance for optoelectronics and quantum communication technologie

    Roadmap on ferroelectric hafnia- and zirconia-based materials and devices

    Get PDF
    Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development

    Optimization of performance and reliability of HZO-based capacitors for ferroelectric memory applications

    Get PDF
    In an era in which the amount of produced and stored data continues to exponentially grow, standard memory concepts start showing size, power consumption and costs limitation which make the search for alternative device concepts essential. Within a context where new technologies such as DRAM, magnetic RAM, resistive RAM, phase change memories and eFlash are explored and optimized, ferroelectric memory devices like FeRAM seem to showcase a whole range of properties which could satisfy market needs, offering the possibility of creating a non-volatile RAM. In fact, hafnia and zirconia-based ferroelectric materials opened up a new scenario in the memory technology scene, overcoming the dimension scaling limitations and the integration difficulties presented by their predecessors perovskite ferroelectrics. In particular, HfₓZr₁₋ₓO₂ stands out because of high processing flexibility and ease of integration in the standard semiconductor industry process flows for CMOS fabrication. Nonetheless, further understanding is necessary in order tocorrelate device performance and reliability to the establishment of ferroelectricity itself. The aim of this work is to investigate how the composition of the ferroelectric oxide, together with the one of the electrode materials influence the behavior of a ferroelectric RAM. With this goal, different process parameters and reliability properties are considered and an analysis of the polarization reversal is performed. Starting from undoped hafnia and zirconia and subsequently examining their intermixed system, it is shown how surface/volume energy contributions, mechanical stress and oxygen-related defects all concur in the formation of the ferroelectric phase. Based on the process optimization of an HfₓZr₁₋ₓO₂-based capacitor performed within these pages, a 64 kbit 1T1C FeRAM array is demonstrated by Sony Semiconductor Solutions Corporation which shows write voltage and latency as low as 2.0 V and 16 ns, respectively. Outstanding retention and endurance performances are also predicted, which make the addressed device an extremely strong competitor in the semiconductor scene

    Room temperature reversible colossal volto-magnetic effect in all-oxide metallicmagnet/topotactic-phase-transition material heterostructures

    Full text link
    Multiferroic materials have undergone extensive research in the past two decades in an effort to produce a sizable room-temperature magneto-electric (ME) effect in either exclusive or composite materials for use in a variety of electronic or spintronic devices. These studies have looked into the ME effect by switching the electric polarization by the magnetic field or switching the magnetism by the electric field. Here, an innovative way is developed to knot the functional properties based on the tremendous modulation of electronics and magnetization by the electric field of the topotactic phase transitions (TPT) in heterostructures composed of metallic-magnet/TPT-material. It is divulged that application of a nominal potential difference of 2-3 Volts induces gigantic changes in magnetization by 100-250% leading to colossal Voltomagnetic effect, which would be tremendously beneficial for low-power consumption applications in spintronics. Switching electronics and magnetism by inducing TPT through applying an electric field requires much less energy, making such TPT-based systems promising for energy-efficient memory and logic applications as well as opening a plethora of tremendous opportunities for applications in different domains

    Ferroelectric Field Effect Transistor for Memory and Switch Applications

    Get PDF
    Silicon technology has advanced at exponential rates both in performances and productivity through the past four decades. However the limit of CMOS technology seems to be closer and closer and in the future we might see an increasing number of hybrid approaches where other technologies add to the CMOS performance, while maintaining a back-bone of CMOS logic. Ferro-electricity in ultra-thin films has been investigated as a credible candidate for nonvolatile memory thanks to the bistability of polarization. 1 transistor (1T) ferroelectric memory cells have been proposed and experimentally studied in order to reduce the size of 1T-1C (1Transistor-1Capacitor) design with consequent advantages in terms of size, read-out operation and costs. More recently ferroelectrics have been proposed by Salahuddin and Datta as dielectric materials in order to lower the 60mV/dec limit of the subthreshold swing (SS) in silicon Metal Oxide Semiconductor Field Effect Transistors, MOSFETs. The objective of this thesis is to study the ferroelectric transistor performance for both memory and switch application. For this purpose different Ferroelectric Field Effect Transistors, Fe-FETs, structures have been designed, fabricated and characterized. An organic ferroelectric polymer, vinylidene fluoride trifluorethylene, P(VDF-TrFE), of 100nm and 40nm thickness has been successfully integrated into the gate stack of bulk and SOI MOSFET and, later, on a Tunnel FET, TFET, structure. The 1T ferroelectric FET memory cells have shown a programming time in the order of ms at 9V as programming voltage. The retention of a few seconds, however, is the main limiting factor for the usage of this device for NV-memory applications. The retention failure mechanisms have been studied and investigated for future improvement. For the first time this work experimentally demonstrates that a subthreshold swing lower than 60mv/dec can be achieved in a ferroelectric transistor thanks to the voltage amplification arising from the ferroelectric material. This unique finding has been first measured in a 40nm P(VDF-TrFE)/10nm SiO2 gate stack MOSFET and then, confirmed, in a 100nm P(VDF-TrFE)/10nm SiO2 gate MOSFET with an intermediate contact between the two dielectrics. This internal node contact allows the study of the voltage amplification due to the ferroelectric material. Finally a temperature study of the performance of a ferroelectric Fully Depleted Silicon on Insulator, FD SOI, transistor has been done. A model based on Landau's theory has been carried out and it has been experimentally validated for both the subthreshold and the strong inversion regions. It has been demonstrated for the first time that, because of the divergence of the ferroelectric permittivity at the Curie temperature, Tc, a ferroelectric transistor has a maximum and a minimum, respectively of its transconductance and subthreshold swing, at Tc

    Van der Waals Heterostructures based on Two-dimensional Ferroelectric and Ferromagnetic Layers

    Get PDF
    Two-dimensional (2D) van der Waals (vdW) crystals provide a platform for studies of novel phenomena and promising applications beyond traditional systems. This PhD thesis focuses on vertical 2D vdW heterostructures, including ferroelectric semiconductor junctions (FSJs), p-n junction diodes, and magnetic tunnel junctions (MTJs). These have potential for non-volatile memories, ultraviolet (UV) photosensing and low-power electronics. The ferroelectric polarization of the vdW semiconductor α-In2Se3 in graphene/α-In2Se3/graphene FSJs was switched by the bias voltage, thus producing memristive effects in the transport characteristics. These can be modified by light due to screening of the polarization by photocreated carriers. The FSJs demonstrated a high photoresponsivity (up to ~ 10^6 A/W) and a relatively fast modulation (down to ~ 0.2 ms) of the photocurrent. The graphene/p-GaSe/n-In2Se3/graphene heterostructures were used to investigate novel mechanisms for the detection of UV light. The p-GaSe/n-In2Se3 type-II band alignment and the electric field at the vdW interfaces were found to be beneficial to suppress carrier recombination and enhance the UV-photoresponse. Finally, the Fe3GaTe2/WSe2/Fe3GaTe2 MTJs exhibited an ideal tunnelling behaviour with a tunnel magnetoresistance (TMR) signal as large as 85 % at room temperature, breaking through the bottleneck of previous vdW MTJs that worked only at low temperatures (T < 300 K). The findings of this work offer opportunities for further developments, including the optimization of device structures and their studies towards enhanced functionalities beyond the current state of the art

    Ferroelectrics

    Get PDF
    Ferroelectric materials exhibit a wide spectrum of functional properties, including switchable polarization, piezoelectricity, high non-linear optical activity, pyroelectricity, and non-linear dielectric behaviour. These properties are crucial for application in electronic devices such as sensors, microactuators, infrared detectors, microwave phase filters and, non-volatile memories. This unique combination of properties of ferroelectric materials has attracted researchers and engineers for a long time. This book reviews a wide range of diverse topics related to the phenomenon of ferroelectricity (in the bulk as well as thin film form) and provides a forum for scientists, engineers, and students working in this field. The present book containing 24 chapters is a result of contributions of experts from international scientific community working in different aspects of ferroelectricity related to experimental and theoretical work aimed at the understanding of ferroelectricity and their utilization in devices. It provides an up-to-date insightful coverage to the recent advances in the synthesis, characterization, functional properties and potential device applications in specialized areas

    Perspective on unconventional computing using magnetic skyrmions

    Full text link
    Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctuations present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.Comment: 19 pages and 3 figure

    Magnetism in curved geometries

    Get PDF
    Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, microrobotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characterization studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism

    Van der Waals Heterostructures based on Two-dimensional Ferroelectric and Ferromagnetic Layers

    Get PDF
    Two-dimensional (2D) van der Waals (vdW) crystals provide a platform for studies of novel phenomena and promising applications beyond traditional systems. This PhD thesis focuses on vertical 2D vdW heterostructures, including ferroelectric semiconductor junctions (FSJs), p-n junction diodes, and magnetic tunnel junctions (MTJs). These have potential for non-volatile memories, ultraviolet (UV) photosensing and low-power electronics. The ferroelectric polarization of the vdW semiconductor α-In2Se3 in graphene/α-In2Se3/graphene FSJs was switched by the bias voltage, thus producing memristive effects in the transport characteristics. These can be modified by light due to screening of the polarization by photocreated carriers. The FSJs demonstrated a high photoresponsivity (up to ~ 10^6 A/W) and a relatively fast modulation (down to ~ 0.2 ms) of the photocurrent. The graphene/p-GaSe/n-In2Se3/graphene heterostructures were used to investigate novel mechanisms for the detection of UV light. The p-GaSe/n-In2Se3 type-II band alignment and the electric field at the vdW interfaces were found to be beneficial to suppress carrier recombination and enhance the UV-photoresponse. Finally, the Fe3GaTe2/WSe2/Fe3GaTe2 MTJs exhibited an ideal tunnelling behaviour with a tunnel magnetoresistance (TMR) signal as large as 85 % at room temperature, breaking through the bottleneck of previous vdW MTJs that worked only at low temperatures (T < 300 K). The findings of this work offer opportunities for further developments, including the optimization of device structures and their studies towards enhanced functionalities beyond the current state of the art
    corecore