1,791 research outputs found

    A Multiperiod OPF Model Under Renewable Generation Uncertainty and Demand Side Flexibility

    Full text link
    Renewable energy sources such as wind and solar have received much attention in recent years and large amount of renewable generation is being integrated to the electricity networks. A fundamental challenge in power system operation is to handle the intermittent nature of the renewable generation. In this paper we present a stochastic programming approach to solve a multiperiod optimal power flow problem under renewable generation uncertainty. The proposed approach consists of two stages. In the first stage operating points for conventional power plants are determined. Second stage realizes the generation from renewable resources and optimally accommodates it by relying on demand-side flexibility. The benefits from its application are demonstrated and discussed on a 4-bus and a 39-bus systems. Numerical results show that with limited flexibility on the demand-side substantial benefits in terms of potential additional re-dispatch costs can be achieved. The scaling properties of the approach are finally analysed based on standard IEEE test cases upto 300 buses, allowing to underlined its computational efficiency.Comment: 8 pages, 10 figure

    Harnessing Markets for Water Quality

    Get PDF
    This issue of IMPACT is devoted to exploring and understanding the opportunities and challenges of harnessing markets to improve water quality. It looks at how markets could be implemented to address the growing concern of nonpoint source pollution as well as point sources. Recently, the EPA proposed a water quality trading proposal, which is summarized, reviewed, and critiqued

    An integrated OPF dispatching model with wind power and demand response for day-ahead markets

    Get PDF
    In the day-ahead dispatching of network-constrained electricity markets, renewable energy and distributed resources are dispatched together with conventional generation. The uncertainty and volatility associated to renewable resources represents a new paradigm to be faced for power system operation. Moreover, in various electricity markets there are mechanisms to allow the demand participation through demand response (DR) strategies. Under operational and economic restrictions, the operator each day, or even in intra-day markets, dispatchs an optimal power flow to find a feasible state of operation. The operation decisions in power markets use an optimal power flow considering unit commitment to dispatch economically generation and DR resources under security restrictions. This paper constructs a model to include demand response in the optimal power flow under wind power uncertainty. The model is formulated as a mixed-integer linear quadratic problem and evaluated through Monte-Carlo simulations. A large number of scenarios around a trajectory bid captures the uncertainty in wind power forecasting. The proposed integrated OPF model is tested on the standard IEEE 39-bus system

    Exploring market designs for local energy markets : core functionalities and value proposition in the context of blockchain, IoT and prosumers

    Get PDF
    This dissertation aimed to assess the impact of innovative smart market solutions and Blockchain technology on achieving efficient localized energy markets. Trends suggest the future of renewable energy generation will involve a move away from centralized power plants, and towards a large number of smaller generation units, such as PV cells. There are clear synergies between the market dynamics of photovoltaic systems and Blockchain-enabled smart markets, which can be harnessed towards integrating new consumption patterns and energy sources, as well as connecting consumers. Successful business strategy to integrate these technologies can lead to market leadership in this new industry. Captivating consumers is a key determinant of success, and offering lower electricity prices a necessary condition. For such offering to be feasible, markets need to be more efficient, as smart microgrids are proving to be. Consequently, there came the interest to see how new local electricity markets could be set up, while taking advantage of decentralization. A peer-to-peer, auction-based, local energy market was idealized and various simulations of were ran with differing levels of participants and structure, to understand the impact on the price of electricity achieved by the market. Market size and structure were both shown to affect price at different magnitudes, suggesting an ideal setup of 25-40 participants with generation capabilities over 60% of demand. Further analysis was undertaken to understand the impact of smart meters and Blockchain integration in such a market. Afterwards, conclusions were compiled and recommendations provided for how to approach new practical implementations.Esta dissertação teve como objetivo avaliar o impacto de inovadoras soluções de mercados inteligentes e tecnologia Blockchain em mercados locais de energia. Tendencias apontam para que o futuro das energias renovaveis passe por uma maior prevalencia de paineis fotovoltaicos domesticos. As sinergias entre as atuais dinamicas em mercados eletricos e o uso da Blockchain em mercados inteligentes parecem claras, podendo ser aproveitaveis para integrar novos perfis de consumo e conectar consumidores. Sendo um novo segmento, estratégias de mercado bem conseguidas serão essencias para ganhar posição, e a capacidade de angariar consumidores será um indicador crucial de sucesso. Para tal, os mercados têm que ser mais eficientes, algo que se tem revelado factual em casos de micro sistemas. Assim, criou-se o interesse de perceber como desenhar e implementar mercados localizados de energia que beneficiem desta tendencia de desintermediação. Para tal, um mercado interativo à base de leilões de eletricidade entre consumidores foi idealizado. Posteriormente, este foi simulado repetidamente, com diferentes dimensões e estruturas, a fim de perceber o seu impacto nos preços médios alcançados. Foi mostrado que tamanho e composição afetam os preços em magnitudes diferentes, sugerindo uma dimensão ideal de 25-40 participantes, com capacidades de autogeração superiores a 60%. Análises posteriors foram desenvolvidas de modo substantive, para avaliar o impacto de contadores eletricos inteligentes e integração da Blockchain neste tipo de mercado. Finalmente, conclusões foram reunidas e transformadas em recomendações para futuras implementações práticas

    An integrated multiperiod OPF model with demand response and renewable generation uncertainty

    Get PDF
    Renewable energy sources such as wind and solar have received much attention in recent years, and large amounts of renewable generation are being integrated into electricity networks. A fundamental challenge in power system operation is to handle the intermittent nature of renewable generation. In this paper, we present a stochastic programming approach to solve a multiperiod optimal power flow problem under renewable generation uncertainty. The proposed approach consists of two stages. In the first stage, operating points of the conventional power plants are determined. The second stage realizes generation from the renewable resources and optimally accommodates it by relying on the demand-side flexibilities. The proposed model is illustrated on a 4-bus and a 39-bus system. Numerical results show that substantial benefits in terms of redispatch costs can be achieved with the help of demand side flexibilities. The proposed approach is tested on the standard IEEE test networks of up to 300 buses and for a wide variety of scenarios for renewable generation

    A Call to Cities: Run Out of Water or Create Resilience and Abundance?

    Get PDF
    New management choices, with new approaches to urbanization and integrated water-energy-food management, are emerging as critical to combat water stress. Urban strategies and tactics are explored in this chapter with a focus on scaling effective solutions and approaches. This includes a focus on small, modular, and integrated water-energy-food hubs; off-grid and localized “circular economy” services that are affordable, accessible, and reliable; blended finance for new technologies, infrastructure and business models, strategic plans, and policies; and urban, behavioral, and decision sciences-informed decisions and new public-private-research-driven partnerships and processes. There are two key messages: first, business as usual could lead to “running out” of water where it’s needed most—in cities and for agricultural and industrial production. Second, “innovators” and “early adopters” of market-based and data-driven efforts can help scale solutions led by people and communities investing in new ways to integrate urban water, energy, and food systems. The chapter concludes with discussion on a new, proactive “maturity” model, enabling integrated urban infrastructure systems, governance, and cross-sector innovation. This includes market-based and data-driven responses that first focus on improving quality of life, sustainability, and resilience of communities, bringing valued services via water-energy-food nexus decisions

    Analysis of a total integration of renewable energy through a dynamic virtual power plant model and the use of hydrogen as a method of energy production stabilization

    Get PDF
    The growing need for change in the energy vector, the increasing popularity of renewable energies, as well as the European regulations to achieve zero emissions by 2050 (currently at 21.8% in Europe with a projection of 42.5% by 2030), prompt the analysis of scenarios for meeting the annual demand in three autonomous communities (Andalusia and Valencia) while considering the current electric grid and a new scenario with the most optimal distribution. This analysis involves simplifying the grid and utilizing a distributed virtual power plant (DVPP). These scenarios consider increasing the share of renewables up to 99% and implementing hydrogen-based storage technologies to evaluate their economic impact on the levelized cost of energy and how it increases as the share of renewables grows. Prices for each available technology have been obtained to achieve a more realistic approximation. Variables such as capital expenditures (CAPEX), operating expenses (OPEX), fuel costs where applicable, and replacement costs have been considered, as the project analyses the system with a 50-year outlook, and some technologies have a lifespan shorter than this period. The obtained results will be used to analyse the capacities of hydrogen plants in terms of power and storage, as well as their behaviour in balancing the grid as a supporting technology for intermittent generation sources such as wind and photovoltaic, and for managing potential energy surpluse
    • …
    corecore