30 research outputs found

    Joint Localization and Mapping through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals with multiple transmit and receive antennas are considered as enabling technology for enhanced mobile broadband services in 5G systems. While this combination is mainly associated with achieving high data rates, it also offers huge potential for radio-based positioning. Recent studies showed that millimeter wave signals with multiple transmit and receive antennas are capable of jointly estimating the position and orientation of a mobile terminal while mapping the radio environment simultaneously. To this end, we present a message passing-based estimator which jointly estimates the position and orientation of the mobile terminal, as well as the location of reflectors or scatterers in the absence of the line-of-sight path. We provide numerical examples showing that our estimator can provide considerably higher estimation accuracy compared to a state-of-the-art estimator. Our examples demonstrate that our message passing-based estimator neither requires the presence of a line-of-sight path nor prior knowledge regarding any of the parameters to be estimated

    Joint Localization and Mapping through Millimeter Wave MIMO in 5G Systems - Extended Version

    Full text link
    Millimeter wave signals with multiple transmit and receive antennas are considered as enabling technology for enhanced mobile broadband services in 5G systems. While this combination is mainly associated with achieving high data rates, it also offers huge potential for radio-based positioning. Recent studies showed that millimeter wave systems with multiple transmit and receive antennas are capable of jointly estimating the position and orientation of a mobile terminal while mapping the radio environment simultaneously. To this end, we present a message passing-based estimator which jointly estimates the position and orientation of the mobile terminal, as well as the location of reflectors or scatterers. We provide numerical examples showing that this estimator can provide considerably higher estimation accuracy compared to a state-of-the-art estimator. Our examples demonstrate that our message passing-based estimator neither requires the presence of a line-of-sight path nor prior knowledge regarding any of the parameters to be estimated

    Wireless Localization for mmWave Networks in Urban Environments

    Full text link
    Millimeter wave (mmWave) technology is expected to be a major component of 5G wireless networks. Ultra-wide bandwidths of mmWave signals and the possibility of utilizing large number of antennas at the transmitter and the receiver allow accurate identification of multipath components in temporal and angular domains, making mmWave systems advantageous for localization applications. In this paper, we analyze the performance of a two-step mmWave localization approach that can utilize time-of-arrival, angle-of-arrival, and angle-of-departure from multiple nodes in an urban environment with both line-of-sight (LOS) and non-LOS (NLOS) links. Networks with/without radio-environmental mapping (REM) are considered, where a network with REM is able to localize nearby scatterers. Estimation of a UE location is challenging due to large numbers of local optima in the likelihood function. To address this problem, a gradient-assisted particle filter (GAPF) estimator is proposed to accurately estimate a user equipment (UE) location as well as the locations of nearby scatterers. Monte Carlo simulations show that the GAPF estimator performance matches the Cramer-Rao bound (CRB). The estimator is also used to create an REM. It is seen that significant localization gains can be achieved by increasing beam directionality or by utilizing REM

    Harnessing NLOS Components for Position and Orientation Estimation in 5G Millimeter Wave MIMO

    Get PDF
    In the past, NLOS propagation was proven to be a source of distortion for radio-based positioning systems due to the lack of temporal and spatial resolution of previous cellular systems. Hence, every NLOS component was perceived as a perturbation for localization. Even though 5G is not yet standardized, a strong proposal, which has the potential to overcome the problem of limited temporal and spatial resolution, is the massive MIMO millimeter wave technology. We reconsider the role of NLOS components for position and orientation estimation in 5G millimeter wave MIMO systems. Our analysis is based on the concept of Fisher information. We show that for sufficiently high temporal and spatial resolution, NLOS components always provide position and orientation information that consequently increase position and orientation estimation accuracy. In addition, we show that the information gain of NLOS components depends on the actual location of the reflector or scatter. Our numerical examples suggest that the NLOS components are most informative about the position and orientation of a mobile terminal when the corresponding reflectors or scatterers are illuminated with narrow beams

    Clock and Orientation-Robust Simultaneous Radio Localization and Mapping at Millimeter Wave Bands

    Full text link
    This paper proposes a radio simultaneous location and mapping (radio-SLAM) scheme based on sparse multipath channel estimation. By leveraging sparse channel estimation schemes at millimeter wave bands, namely high resolution estimates of the multipath angle of arrival (AoA), time difference of arrival (TDoA), and angle of departure (AoD), we develop a radio-SLAM algorithm that operates without any requirements of clock synchronization, receiver orientation knowledge, multiple anchor points, or two-way protocols. Thanks to the AoD information obtained via compressed sensing (CS) of the channel, the proposed scheme can estimate the receiver clock offset and orientation from a single anchor transmission, achieving sub-meter accuracy in a realistic typical channel simulation.Comment: This is the author's pre-print version of a paper accepted for presentation in IEEE WCNC 2023, Glasgow, Scotlan
    corecore