122 research outputs found

    3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities

    Get PDF
    Accurate, automated quantitative segmentation of anatomical structures in radiological scans, such as Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), can produce significant biomarkers and can be integrated into computer-aided diagnosis (CADx) systems to support the in- terpretation of medical images from multi-protocol scanners. However, there are serious challenges towards developing robust automated segmentation techniques, including high variations in anatomical structure and size, varying image spatial resolutions resulting from different scanner protocols, and the presence of blurring artefacts. This paper presents a novel computing ap- proach for automated organ and muscle segmentation in medical images from multiple modalities by harnessing the advantages of deep learning techniques in a two-part process. (1) a 3D encoder-decoder, Rb-UNet, builds a localisation model and a 3D Tiramisu network generates a boundary-preserving segmentation model for each target structure; (2) the fully trained Rb-UNet predicts a 3D bounding box encapsulating the target structure of interest, after which the fully trained Tiramisu model performs segmentation to reveal organ or muscle boundaries for every protrusion and indentation. The proposed approach is evaluated on six different datasets, including MRI, Dynamic Contrast Enhanced (DCE) MRI and CT scans targeting the pancreas, liver, kidneys and iliopsoas muscles. We achieve quantitative measures of mean Dice similarity coefficient (DSC) that surpasses or are comparable with the state-of-the-art and demonstrate statistical stability. A qualitative evaluation performed by two independent experts in radiology and radiography verified the preservation of detailed organ and muscle boundaries

    Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained Deep Neural Networks

    Full text link
    Quantitative assessment of the abdominal region from clinically acquired CT scans requires the simultaneous segmentation of abdominal organs. Thanks to the availability of high-performance computational resources, deep learning-based methods have resulted in state-of-the-art performance for the segmentation of 3D abdominal CT scans. However, the complex characterization of organs with fuzzy boundaries prevents the deep learning methods from accurately segmenting these anatomical organs. Specifically, the voxels on the boundary of organs are more vulnerable to misprediction due to the highly-varying intensity of inter-organ boundaries. This paper investigates the possibility of improving the abdominal image segmentation performance of the existing 3D encoder-decoder networks by leveraging organ-boundary prediction as a complementary task. To address the problem of abdominal multi-organ segmentation, we train the 3D encoder-decoder network to simultaneously segment the abdominal organs and their corresponding boundaries in CT scans via multi-task learning. The network is trained end-to-end using a loss function that combines two task-specific losses, i.e., complete organ segmentation loss and boundary prediction loss. We explore two different network topologies based on the extent of weights shared between the two tasks within a unified multi-task framework. To evaluate the utilization of complementary boundary prediction task in improving the abdominal multi-organ segmentation, we use three state-of-the-art encoder-decoder networks: 3D UNet, 3D UNet++, and 3D Attention-UNet. The effectiveness of utilizing the organs' boundary information for abdominal multi-organ segmentation is evaluated on two publically available abdominal CT datasets. A maximum relative improvement of 3.5% and 3.6% is observed in Mean Dice Score for Pancreas-CT and BTCV datasets, respectively.Comment: 15 pages, 16 figures, journal pape

    A Coarse-to-fine Framework for Automated Kidney and Kidney Tumor Segmentation from Volumetric CT Images

    Get PDF
    Automatic semantic segmentation of kidney and kidney tumor is a promising tool for the treatment of kidney cancer. Due to the wide variety in kidney and kidney tumor morphology, it is still a great challenge to complete accurate segmentation of kidney and kidney tumor. We propose a new framework based on our previous work accepted by MICCAI2019, which is a coarse-to-fine segmentation framework to realize accurate and fast segmentation of kidney and kidney tumor

    Multi-organ Segmentation via Co-training Weight-averaged Models from Few-organ Datasets

    Full text link
    Multi-organ segmentation has extensive applications in many clinical applications. To segment multiple organs of interest, it is generally quite difficult to collect full annotations of all the organs on the same images, as some medical centers might only annotate a portion of the organs due to their own clinical practice. In most scenarios, one might obtain annotations of a single or a few organs from one training set, and obtain annotations of the the other organs from another set of training images. Existing approaches mostly train and deploy a single model for each subset of organs, which are memory intensive and also time inefficient. In this paper, we propose to co-train weight-averaged models for learning a unified multi-organ segmentation network from few-organ datasets. We collaboratively train two networks and let the coupled networks teach each other on un-annotated organs. To alleviate the noisy teaching supervisions between the networks, the weighted-averaged models are adopted to produce more reliable soft labels. In addition, a novel region mask is utilized to selectively apply the consistent constraint on the un-annotated organ regions that require collaborative teaching, which further boosts the performance. Extensive experiments on three public available single-organ datasets LiTS, KiTS, Pancreas and manually-constructed single-organ datasets from MOBA show that our method can better utilize the few-organ datasets and achieves superior performance with less inference computational cost.Comment: Accepted by MICCAI 202

    Towards Robust Deep Learning for Medical Image Analysis

    Get PDF
    Multi-dimensional medical data are rapidly collected to enhance healthcare. With the recent advance in artificial intelligence, deep learning techniques have been widely applied to medical images, constituting a significant proportion of medical data. The techniques of automated medical image analysis have the potential to benefit general clinical procedures, e.g., disease screening, malignancy diagnosis, patient risk prediction, and surgical planning. Although preliminary success takes place, the robustness of these approaches requires to be cautiously validated and sufficiently guaranteed before their application to real-world clinical problems. In this thesis, we propose different approaches to improve the robustness of deep learning algorithms for automated medical image analysis. (i) In terms of network architecture, we leverage the advantages of both 2D and 3D networks, and propose an alternative 2.5D approach for 3D organ segmentation. (ii) To improve data efficiency and utilize large-scale unlabeled medical data, we propose a unified framework for semi-supervised medical image segmentation and domain adaptation. (iii) For the safety-critical applications, we design a unified approach for failure detection and anomaly segmentation. (iv) We study the problem of Federated Learning, which enables collaborative learning and preserves data privacy, and improve the robustness of the algorithm in the non-i.i.d setting. (v) We incorporate multi-phase information for more accurate pancreatic tumor detection. (vi) Finally, we show our discovery for potential pancreatic cancer screening on non-contrast CT scans which outperform expert radiologists

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning
    • …
    corecore