6,261 research outputs found

    A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem

    Get PDF
    This paper proposes a novel approach to address the Unequal Area Facility Layout Problem (UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimization (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure of flexible bays has been selected as effective encoding to represent the facility layouts within the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP cases, considering small, medium and large size categories. The empirical results obtained are compared with previous state of the art algorithms, in order to show the performance of the IMCRO. From this comparison, it can be extracted that both versions of the proposed IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances in all the size categories

    A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) has been widely analyzed in the literature using several heuristics and meta-heuristics to optimize some qualitative criteria, taking into account different restrictions and constraints. Nevertheless, the subjective opinion of the designer (Decision Maker, DM) has never been considered along with the quantitative criteria and restrictions. This work proposes a novel approach for the UA-FLP based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which combines the simultaneous consideration of both quantitative and qualitative (DM opinion) features. The algorithm implementation is explained in detail, including the way of jointly considering quantitative and qualitative aspects in the fitness function of the problem. The experimental part of the paper illustrates the effect of including qualitative aspects in UA-FLP problems, considering three different hard UA-FLP instances. Empirical results show that the proposed approach is able to incorporate the DM preferences in the obtained layouts, without affecting much to the quantitative part of the solutions

    A Hybrid Coral Reefs Optimization – Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) is a relevant optimization problem related to industrial design, that deals with obtaining the most effective allocation of facilities, that make up the rectangular manufacturing plant layout. The UA-FLP is known to be a hard optimization problem, where meta-heuristic approaches are a good option to obtain competitive solutions. Many of these computational approaches, however, usually fall into local optima, and suffer from lack of diversity in their population, mainly due to the huge search spaces and hard fitness landscapes produced by the traditional representation of UA-FLP. To solve these issues, in this paper we propose a novel hybrid meta-heuristic approach, which combines a Coral Reefs Optimization algorithm (CRO) with a Variable Neighborhood Search (VNS) and a new representation for the problem, called Relaxed Flexible Bay Structure (RFBS), which simplifies the encoding and makes its fitness landscape more affordable. Thus, the use of VNS allows more intensive exploitation of the searching space with an affordable computational cost, as well as the RFBS allows better management of the free space into the plant layout. This combined strategy has been tested over a set of UA-FLP instances of different sizes, which have been previously tackled in the literature with alternative meta-heuristics. The tests results show very good performance in all cases

    Facility layout planning. An extended literature review

    Full text link
    [EN] Facility layout planning (FLP) involves a set of design problems related to the arrangement of the elements that shape industrial production systems in a physical space. The fact that they are considered one of the most important design decisions as part of business operation strategies, and their proven repercussion on production systems' operation costs, efficiency and productivity, mean that this theme has been widely addressed in science. In this context, the present article offers a scientific literature review about FLP from the operations management perspective. The 232 reviewed articles were classified as a large taxonomy based on type of problem, approach and planning stage and characteristics of production facilities by configuring the material handling system and methods to generate and assess layout alternatives. We stress that the generation of layout alternatives was done mainly using mathematical optimisation models, specifically discrete quadratic programming models for similar sized departments, or continuous linear and non-linear mixed integer programming models for different sized departments. Other approaches followed to generate layout alternatives were expert's knowledge and specialised software packages. Generally speaking, the most frequent solution algorithms were metaheuristics.The research leading to these results received funding from the European Union H2020 Program under grant agreement No 958205 `Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)'and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 `Optimisation of zerodefectsproduction technologies enabling supply chains 4.0 (CADS4.0)'Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2021). Facility layout planning. An extended literature review. International Journal of Production Research. 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.189717637773816591

    Charged System Search and Magnetic Charged System Search Algorithms for Construction Site Layout Planning Optimization

    Get PDF
    Construction site layout planning can be considered as an effort to place different temporary facilities in available site locations such that multiple objectives are satisfied as much as possible. With the extension of high-rise building construction and construction activities besides the lack of available spaces in construction sites, proper utilization of this resource has been highlighted because of its significant positive influences on direct cost, safety, and security of the site which consequently affects the total cost and schedule of the project. Thus the construction site layout planning is considered as one of the essential and important phases in construction projects. Site layout planning problem is an NP-Hard problem from the viewpoint of complexity. In this research, two prominent meta-heuristic algorithms, namely Charged System Search (CSS) and Magnetic Charged System Search (MCSS) are utilized to optimize the site layout planning problem. The obtained results of implementing these two algorithms for two different types of site space modeling are compared with the results of the Particle Swarm Optimization (PSO) algorithm and also those of the previous studies. The results illustrate the capability of the CSS and MCSS algorithms in solving the present problem

    Using Biological Knowledge for Layout Optimization of Construction Site Temporary Facilities: A Case Study

    Get PDF
    In recent years, a number of studies have successfully transformed various models for biological collective behavior into intelligent optimization algorithms. These bio-inspired optimization techniques have been developed to provide better solutions than traditional methods to a variety of engineering problems. This paper attempts to apply and compare recent bio-inspired algorithms for determining the best layout of construction temporary facilities. To validate the performance of the proposed techniques, an actual building construction project was used as a test problem. Based on the obtained results, the performance of each bio-inspired algorithm is highlighted and discussed. This paper presents beneficial insights to decision-makers in the construction industry that are involved in handling optimization problems

    Optimal generation scheduling in hydro-power plants with the Coral Reefs Optimization algorithm

    Get PDF
    Hydro-power plants are able to produce electrical energy in a sustainable way. A known format for producing energy is through generation scheduling, which is a task usually established as a Unit Commitment problem. The challenge in this process is to define the amount of energy that each turbine-generator needs to deliver to the plant, to fulfill the requested electrical dispatch commitment, while coping with the operational restrictions. An optimal generation scheduling for turbine-generators in hydro-power plants can offer a larger amount of energy to be generated with respect to non-optimized schedules, with significantly less water consumption. This work presents an efficient mathematical modelling for generation scheduling in a real hydro-power plant in Brazil. An optimization method based on different versions of the Coral Reefs Optimization algorithm with Substrate Layers (CRO) is proposed as an effective method to tackle this problem.This approach uses different search operators in a single population to refine the search for an optimal scheduling for this problem. We have shown that the solution obtained with the CRO using Gaussian search in exploration is able to produce competitive solutions in terms of energy production. The results obtained show a huge savings of 13.98 billion (liters of water) monthly projected versus the non-optimized scheduling.European CommissionMinisterio de Economía y CompetitividadComunidad de Madri

    Firefly algorithm based upon slicing structure encoding for unequal facility layout problem

    Get PDF
    Finding the locations of departments or machines in a workspace is classified as a Facility Layout Problem. Good placement of departments has a relevant influence on manufacturing costs, work in process, lead times and production efficiency. This paper analyses the problem of allocating departments with restrictions in terms of unequal area and rectangular shape within a facility, in order to minimize the sum of material handling costs taking into account the satisfaction of the aspect ratio requested. In particular, we propose for the first time a Firefly Algorithm based on the slicing structure encoding. The proposed method was tested comparing the results obtained from other authors on the same literature instance. The results confirm the effectiveness of the Firefly Algorithm in solving the Facility Layout Problem by generating the best solutions with respect to those provided by previous researches

    Evolutionary Computation Strategies applied to the UA-FLP

    Get PDF
    En la presente tesis doctoral se desarrollan dos aproximaciones distintas al problema de distribución en planta de áreas desiguales (UA-FLP). En primer lugar, se trata de incorporar el conocimiento del diseñador experto a los algoritmos clásicos de optimización, de forma que, además de buscar buenas soluciones desde el punto de vista cuantitativo, por ejemplo minimizando el flujo de materiales, se introduzca la posibilidad de que el diseñador aporte su experiencia y preferencias personales. Para facilitar la intervención humana en el proceso de búsqueda de soluciones, se ha utilizado un procedimiento de clustering, el cual permite clasificar las soluciones subyacentes en el conjunto de búsqueda, de forma que se presente al diseñador un número suficientemente representativo y, a la vez, evitándole una fatiga innecesaria. Además, en esta primera propuesta se han implementado dos técnicas de niching, denominadas Deterministic Crowding y Restricted Tournament Selection. Estas técnicas tienen la capacidad de mantener ciertas propiedades dentro de la población de soluciones, preservar múltiples nichos con soluciones cercanas a los óptimos locales, y reducir la probabilidad de quedar atrapado en ellos. De esta manera el algoritmo se enfoca simultáneamente en más de una región (nicho) en el espacio de búsqueda, lo cual es esencial para descubrir varios óptimos en una sola ejecución. Por otro lado, en la segunda aproximación al problema, se ha implementado una estrategia evolutiva paralela, muy útil para los problemas de alta complejidad en los que el tiempo de ejecución con un enfoque evolutivo secuencial es prohibitivo. La propuesta desarrollada, denominada IMGA, está basada en un algoritmo genético paralelo de grano grueso con múltiples poblaciones o islas. Este enfoque se caracteriza por evolucionar varias subpoblaciones independientemente, entre las que se intercambian individuos, haciendo posible explorar diferentes regiones del espacio de búsqueda, al mismo tiempo que se mantiene la diversidad de la población, permitiendo la obtención de buenas y diversas soluciones. Con ambas propuestas se han realizado experimentos que han arrojado resultados muy satisfactorios, encontrando buenas soluciones para un conjunto de problemas bien conocidos en la bibliografía. Estos buenos resultados han permitido la publicación de dos artículos indexados en el primer decil del ranking JCR (Journal Citation Reports).The present doctoral thesis develops two different approaches to the Unequal Area Facility Layout Problem (UA-FLP). The first approach encompasses the designer’s knowledge on classic optimization of algorithms in pursuance of good quantitative solutions (e.g. minimizing the materials flow) and also opens the possibility to include the contribution of the designer by means of his expertise and personal preferences. A clustering procedure has been used to facilitate human intervention in the process of finding solutions. This allows the underlying solutions to be classified in the search in order to present the designer with sufficiently representative solutions and, at the same time, avoiding unnecessary fatigue. In addition, two niching techniques have been implemented, called Deterministic Crowding and Restricted Tournament Selection. These techniques have the ability to maintain certain properties within the solutions space, preserve multiple niches with solutions close by local optimums, and reduce the probability of being trapped in them. In this way, the algorithm focuses simultaneously on more than one region (niche) in the search space, which is essential to discover several optimums in a single execution. The second approach to the problem comprises the implementation of a parallel evolutionary strategy. This method is useful for problems of high complexity in which the execution time using a sequential evolutionary approach is prohibitive. The proposal developed, called IMGA (Island Model Genetic Algorithm), is based on a parallel genetic algorithm of multiple-population coarse-grained. This is characterized by evolving several subpopulations independently among which individuals are exchanged. Different regions of the search space can be explored while the diversity of the population is maintained. Satisfactory and diverse solutions have been obtained as a result of this method. Experiments with both proposals have been carried out with satisfactory results, providing good solutions for a set of problems well known in the literature. These results were already published in two papers indexed in the first decile of the JCR (Journal Citation Reports) ranking
    corecore