3,245 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Optimal generation scheduling in hydro-power plants with the Coral Reefs Optimization algorithm

    Get PDF
    Hydro-power plants are able to produce electrical energy in a sustainable way. A known format for producing energy is through generation scheduling, which is a task usually established as a Unit Commitment problem. The challenge in this process is to define the amount of energy that each turbine-generator needs to deliver to the plant, to fulfill the requested electrical dispatch commitment, while coping with the operational restrictions. An optimal generation scheduling for turbine-generators in hydro-power plants can offer a larger amount of energy to be generated with respect to non-optimized schedules, with significantly less water consumption. This work presents an efficient mathematical modelling for generation scheduling in a real hydro-power plant in Brazil. An optimization method based on different versions of the Coral Reefs Optimization algorithm with Substrate Layers (CRO) is proposed as an effective method to tackle this problem.This approach uses different search operators in a single population to refine the search for an optimal scheduling for this problem. We have shown that the solution obtained with the CRO using Gaussian search in exploration is able to produce competitive solutions in terms of energy production. The results obtained show a huge savings of 13.98 billion (liters of water) monthly projected versus the non-optimized scheduling.European CommissionMinisterio de Economía y CompetitividadComunidad de Madri

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Evaluating an automated procedure of machine learning parameter tuning for software effort estimation

    Get PDF
    Software effort estimation requires accurate prediction models. Machine learning algorithms have been used to create more accurate estimation models. However, these algorithms are sensitive to factors such as the choice of hyper-parameters. To reduce this sensitivity, automated approaches for hyper-parameter tuning have been recently investigated. There is a need for further research on the effectiveness of such approaches in the context of software effort estimation. These evaluations could help understand which hyper-parameter settings can be adjusted to improve model accuracy, and in which specific contexts tuning can benefit model performance. The goal of this work is to develop an automated procedure for machine learning hyper-parameter tuning in the context of software effort estimation. The automated procedure builds and evaluates software effort estimation models to determine the most accurate evaluation schemes. The methodology followed in this work consists of first performing a systematic mapping study to characterize existing hyper-parameter tuning approaches in software effort estimation, developing the procedure to automate the evaluation of hyper-parameter tuning, and conducting controlled quasi experiments to evaluate the automated procedure. From the systematic literature mapping we discovered that effort estimation literature has favored the use of grid search. The results we obtained in our quasi experiments demonstrated that fast, less exhaustive tuners were viable in place of grid search. These results indicate that randomly evaluating 60 hyper-parameters can be as good as grid search, and that multiple state-of-the-art tuners were only more effective than this random search in 6% of the evaluated dataset-model combinations. We endorse random search, genetic algorithms, flash, differential evolution, and tabu and harmony search as effective tuners.Los algoritmos de aprendizaje automático han sido utilizados para crear modelos con mayor precisión para la estimación del esfuerzo del desarrollo de software. Sin embargo, estos algoritmos son sensibles a factores, incluyendo la selección de hiper parámetros. Para reducir esto, se han investigado recientemente algoritmos de ajuste automático de hiper parámetros. Es necesario evaluar la efectividad de estos algoritmos en el contexto de estimación de esfuerzo. Estas evaluaciones podrían ayudar a entender qué hiper parámetros se pueden ajustar para mejorar los modelos, y en qué contextos esto ayuda el rendimiento de los modelos. El objetivo de este trabajo es desarrollar un procedimiento automatizado para el ajuste de hiper parámetros para algoritmos de aprendizaje automático aplicados a la estimación de esfuerzo del desarrollo de software. La metodología seguida en este trabajo consta de realizar un estudio de mapeo sistemático para caracterizar los algoritmos de ajuste existentes, desarrollar el procedimiento automatizado, y conducir cuasi experimentos controlados para evaluar este procedimiento. Mediante el mapeo sistemático descubrimos que la literatura en estimación de esfuerzo ha favorecido el uso de la búsqueda en cuadrícula. Los resultados obtenidos en nuestros cuasi experimentos demostraron que algoritmos de estimación no-exhaustivos son viables para la estimación de esfuerzo. Estos resultados indican que evaluar aleatoriamente 60 hiper parámetros puede ser tan efectivo como la búsqueda en cuadrícula, y que muchos de los métodos usados en el estado del arte son solo más efectivos que esta búsqueda aleatoria en 6% de los escenarios. Recomendamos el uso de la búsqueda aleatoria, algoritmos genéticos y similares, y la búsqueda tabú y harmónica.Escuela de Ciencias de la Computación e InformáticaCentro de Investigaciones en Tecnologías de la Información y ComunicaciónUCR::Vicerrectoría de Investigación::Sistema de Estudios de Posgrado::Ingeniería::Maestría Académica en Computación e Informátic

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    corecore