717 research outputs found

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    Getting to Net Zero Energy Buildings: A Holistic Techno-ecological Modeling Approach

    Get PDF
    Buildings in the United States are responsible for more than 40% of the primary energy and 70% of electricity usage and greatly in CO2 emission by about 39%, more than any other sector including transportation and industry sectors. This energy consumption is expected to grow mainly due to increasing trends in new buildings construction. Rising energy prices alongside with energy independencies, limited resources, and climate change have made the current situation even worse. An Energy Efficient (EE) building is able to reduce the heating and cooling load significantly compared with a code compliant building. Furthermore, integrating renewable energy sources in the building energy portfolio could drive the building\u27s grid reliance further down. Such buildings that are able to passively save and actively produce energy are called Net Zero Energy Buildings (NZEB). Despite all new energy efficient technologies, reaching NZEB is challenging due to high first cost of super-efficient measures and renewable energy sources as well as integration of the newly on-site generated electricity to the grid. Achieving NZEB without looking at its surrounding environment may result in sub-optimal solutions. Currently, 95% of American households own a car, and with the help of newly introduced Vehicle to Home (V2H) technologies, building, vehicle, renewable energy sources, and ecological environment can work together as a techno-ecological system to fulfill the requirement of an NZEB ecosystem. Due to the great flexibility of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) in interacting with the power grid, they will play a significant role in the future of the power system. In a large scale, an organized fleet of EVs can be considered as reliable and flexible power storage for a set of building blocks or in a smaller scale, individual EV owners can use their own vehicles as a source of power alongside with other sources of power. To this end, V2H technologies can utilize idle EV battery power as an electricity storage tool to mitigate fluctuations in renewable electric power supply, to provide electricity for the building during the peak time, and to help in supplying electricity during emergency situation and power outage. V2H is said to be the solution to a successful integration of renewables and at the same time maintaining the integrity of the grid. This happens through depleting the stored power in the battery of EV and then charging the battery when the demand is low, using the electricity provided by grid or renewables. Government incentives can play an important role in employing this technology by buying out the high first time cost request. According to Energy Information Administration (EIA), U.S. residential utility customers consume 29.95 kWh electricity on average per household-day. With the current technology, EV batteries could store up to 30 kWh electricity. As a result, even for a code compliant house, a family could use EV battery as a source of energy for one normal day operation. For an energy efficient home, there could even be a surplus of energy that could be transferred to the grid. In summary, Achieving NZEB is facing various obstacles and removing these barriers require a more holistic view on a greater system and environment, where a building interacts with on-site renewable energy sources, EV, and its surrounded ecological environment. This dissertation aims to utilize the application of Vehicle to Home technology to reach NZEB by developing two new models in two phases; the macro based excel model (NZEB-VBA) and agent based model (NZEB-ABM). Using these two models, homeowners can calculate the savings through implementing abovementioned technologies which can be considered as a motivation to move toward greener buildings. In the first step, an optimization analysis is performed first to select the best design alternatives for an energy-efficient building under the relevant economic and environmental constraints. Next, solar photovoltaic sources are used to supply the building\u27s remaining energy demand and thereby minimize the building\u27s grid reliance. Finally, Vehicle to Home technology is coupled with the renewable energy source as a substitute for power from the grid. The whole algorithm for this process will be running in the visual basic environment. In the second phase of the study, the focus is more on the dynamic interaction of different components of the system with each other. Although the general procedure is the same, the modeling will take place in a different environment. Showing the status of different parts of the system at any specific time, changing the values of different parameters of the system and observing the results, and investigating the impact of each parameter\u27s on overall behavior of the system are among the advantages of the agent based model. Having real time data can greatly enhance the capabilities of this system. The results indicate that, with the help of energy-efficient design features and a properly developed algorithm to draw electricity from EV and solar energy, it is possible to reduce the required electricity from the power grid by 59% when compared to a standard energy-efficient building and by as much as 90% when compared to a typical code-compliant building. This thereby reduces the electricity cost by 1.55 times the cost of the conventional method of drawing grid electricity. This savings can compensate the installation costs of solar panels and other technologies necessary for a Net Zero Energy Building. In the last phase of the study, a regional analysis will be performed to investigate the effect of different weather conditions, traffic situation and driving behavior on the behavior of this system

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Technology and Management for Sustainable Buildings and Infrastructures

    Get PDF
    A total of 30 articles have been published in this special issue, and it consists of 27 research papers, 2 technical notes, and 1 review paper. A total of 104 authors from 9 countries including Korea, Spain, Taiwan, USA, Finland, China, Slovenia, the Netherlands, and Germany participated in writing and submitting very excellent papers that were finally published after the review process had been conducted according to very strict standards. Among the published papers, 13 papers directly addressed words such as sustainable, life cycle assessment (LCA) and CO2, and 17 papers indirectly dealt with energy and CO2 reduction effects. Among the published papers, there are 6 papers dealing with construction technology, but a majority, 24 papers deal with management techniques. The authors of the published papers used various analysis techniques to obtain the suggested solutions for each topic. Listed by key techniques, various techniques such as Analytic Hierarchy Process (AHP), the Taguchi method, machine learning including Artificial Neural Networks (ANNs), Life Cycle Assessment (LCA), regression analysis, Strength–Weakness–Opportunity–Threat (SWOT), system dynamics, simulation and modeling, Building Information Model (BIM) with schedule, and graph and data analysis after experiments and observations are identified
    • …
    corecore