1,794 research outputs found

    Harmonizing semantic annotations for computational models in biology

    Get PDF
    Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation

    Community modelling, and data - model interoperability

    Get PDF

    Building a Disciplinary, World-Wide Data Infrastructure

    Full text link
    Sharing scientific data, with the objective of making it fully discoverable, accessible, assessable, intelligible, usable, and interoperable, requires work at the disciplinary level to define in particular how the data should be formatted and described. Each discipline has its own organization and history as a starting point, and this paper explores the way a range of disciplines, namely materials science, crystallography, astronomy, earth sciences, humanities and linguistics get organized at the international level to tackle this question. In each case, the disciplinary culture with respect to data sharing, science drivers, organization and lessons learnt are briefly described, as well as the elements of the specific data infrastructure which are or could be shared with others. Commonalities and differences are assessed. Common key elements for success are identified: data sharing should be science driven; defining the disciplinary part of the interdisciplinary standards is mandatory but challenging; sharing of applications should accompany data sharing. Incentives such as journal and funding agency requirements are also similar. For all, it also appears that social aspects are more challenging than technological ones. Governance is more diverse, and linked to the discipline organization. CODATA, the RDA and the WDS can facilitate the establishment of disciplinary interoperability frameworks. Being problem-driven is also a key factor of success for building bridges to enable interdisciplinary research.Comment: Proceedings of the session "Building a disciplinary, world-wide data infrastructure" of SciDataCon 2016, held in Denver, CO, USA, 12-14 September 2016, to be published in ICSU CODATA Data Science Journal in 201

    Interchanging lexical resources on the Semantic Web

    Get PDF
    Lexica and terminology databases play a vital role in many NLP applications, but currently most such resources are published in application-specific formats, or with custom access interfaces, leading to the problem that much of this data is in ‘‘data silos’’ and hence difficult to access. The Semantic Web and in particular the Linked Data initiative provide effective solutions to this problem, as well as possibilities for data reuse by inter-lexicon linking, and incorporation of data categories by dereferencable URIs. The Semantic Web focuses on the use of ontologies to describe semantics on the Web, but currently there is no standard for providing complex lexical information for such ontologies and for describing the relationship between the lexicon and the ontology. We present our model, lemon, which aims to address these gap

    Harmonizing semantic annotations for computational models in biology

    Get PDF
    Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol.Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the Computational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation

    An ontology-based approach for modelling and querying Alzheimer’s disease data

    Get PDF
    Background The recent advances in biotechnology and computer science have led to an ever-increasing availability of public biomedical data distributed in large databases worldwide. However, these data collections are far from being "standardized" so to be harmonized or even integrated, making it impossible to fully exploit the latest machine learning technologies for the analysis of data themselves. Hence, facing this huge flow of biomedical data is a challenging task for researchers and clinicians due to their complexity and high heterogeneity. This is the case of neurodegenerative diseases and the Alzheimer's Disease (AD) in whose context specialized data collections such as the one by the Alzheimer's Disease Neuroimaging Initiative (ADNI) are maintained.Methods Ontologies are controlled vocabularies that allow the semantics of data and their relationships in a given domain to be represented. They are often exploited to aid knowledge and data management in healthcare research. Computational Ontologies are the result of the combination of data management systems and traditional ontologies. Our approach is i) to define a computational ontology representing a logic-based formal conceptual model of the ADNI data collection and ii) to provide a means for populating the ontology with the actual data in the Alzheimer Disease Neuroimaging Initiative (ADNI). These two components make it possible to semantically query the ADNI database in order to support data extraction in a more intuitive manner.Results We developed: i) a detailed computational ontology for clinical multimodal datasets from the ADNI repository in order to simplify the access to these data; ii) a means for populating this ontology with the actual ADNI data. Such computational ontology immediately makes it possible to facilitate complex queries to the ADNI files, obtaining new diagnostic knowledge about Alzheimer's disease.Conclusions The proposed ontology will improve the access to the ADNI dataset, allowing queries to extract multivariate datasets to perform multidimensional and longitudinal statistical analyses. Moreover, the proposed ontology can be a candidate for supporting the design and implementation of new information systems for the collection and management of AD data and metadata, and for being a reference point for harmonizing or integrating data residing in different sources

    The euBusinessGraph ontology: A lightweight ontology for harmonizing basic company information

    Get PDF
    Company data, ranging from basic company information such as company name(s) and incorporation date to complex balance sheets and personal data about directors and shareholders, are the foundation that many data value chains depend upon in various sectors (e.g., business information, marketing and sales, etc.). Company data becomes a valuable asset when data is collected and integrated from a variety of sources, both authoritative (e.g., national business registers) and non-authoritative (e.g., company websites). Company data integration is however a difficult task primarily due to the heterogeneity and complexity of company data, and the lack of generally agreed upon semantic descriptions of the concepts in this domain. In this article, we introduce the euBusinessGraph ontology as a lightweight mechanism for harmonising company data for the purpose of aggregating, linking, provisioning and analysing basic company data. The article provides an overview of the related work, ontology scope, ontology development process, explanations of core concepts and relationships, and the implementation of the ontology. Furthermore, we present scenarios where the ontology was used, among others, for publishing company data (business knowledge graph) and for comparing data from various company data providers. The euBusinessGraph ontology serves as an asset not only for enabling various tasks related to company data but also on which various extensions can be built upon.publishedVersio

    Semantic media decision taking using N3Logic

    Get PDF
    corecore