40 research outputs found

    Load balancing and context aware enhancements for RPL routed Internet of Things.

    Get PDF
    Internet of Things (IoT) has been paving the way for a plethora of potential applications, which becomes more spatial and demanding. The goal of this work is to optimise the performance within the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) in the network layer.RPL still suffers from unbalanced load traffic among the candidate parents. Consequently, the overloaded parent node drains its energy much faster than other candidate parent nodes. This may lead to an early disconnection of a part of the network topology and affect the overall network reliability. To solve this problem, a new objective function (OF) has been proposed to usher better load balancing among the bottleneck candidate parents, and keep the overloaded nodes lifetime thriving to longer survival.Moreover, several IoT applications have antagonistic requirements but pertinent, which results in a greater risk of affecting the network reliability, especially within the emergency scenarios. With the presence of this challenging issue, the current standardised RPL OFs cannot sufficiently fulfil the antagonistic needs of Low-power and Lossy Networks (LLNs) applications. In response to the above issues, a context adaptive OF has been proposed to facilitate exchanging the synergy information between the application and network layers. Thus, the impact of the antagonistic requirements based on context parameters will be mitigated via rationalizing the selection decision of the routing path towards the root node.We implemented the proposed protocol and verified all our findings through excessive measurements via simulations and a realistic deployment using a real testbed of a multi-hop LLNs motes. The results proved the superiority of our solution over the existing ones with respect to end-to-end delay, packet delivery ratio and network lifetime. Our contribution has been accepted initially to be adopted within the standard body Internet Engineering Task Force (IETF)

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Exploring Link Correlation for Performance Improvements in Wireless Networks

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2017. Major: Computer Science. Advisor: Tian He. 1 computer file (PDF); x, 96 pages.In wireless communication, many technologies, such as Wi-Fi, BlueTooth and ZigBee, operate in the same ISM band. With the exponential growth of wireless devices, the ISM band becomes more and more crowded. These wireless devices compete with each other to access spectrum resources, generating cross-technology interference (CTI). Since cross-technology interference may destroy wireless communication, the field is facing an urgent and challenging need to investigate the packet reception quality of wireless links under CTI. In this dissertation, we propose an in-depth systematic study from empirical measurement, theoretical analysis, modeling, to design and implementation of protocols that exploit packet reception patterns of wireless links under cross-technology interference. Based on extensive measurements, we exploit link correlation phenomenon that packet receptions from a transmitter to multiple receivers are correlated. We then propose link correlation model which contradicts the widely made link independent assumption. The proposed model has a broad impact on network designs that utilize concurrent wireless links, which include (i) traditional network protocols such as broadcast, and (ii) diversity-based protocols such as network coding and opportunistic routing. In the study of the impact of link correlation model on traditional network protocols, we present the design and implementation of CorLayer, a general supporting layer for energy efficient reliable broadcast that carefully blacklists certain poorly correlated wireless links. We integrate CorLayer transparently with sixteen state-of-the-art broadcast protocols specified in thirteen publications on three physical testbeds running TelosB, MICAz, and GreenOrbs nodes, respectively. The experimental results show that CorLayer remarkably improves energy efficiency across a wide spectrum of broadcast protocols and that the total number of packet transmissions can be reduced consistently by 47% on average. In the study of the impact of link correlation model on diversity-based protocols, we propose link correlation aware network coding and link correlation aware opportunistic routing. In link correlation aware network coding, we introduce Correlated Coding which seeks to optimize the transmission efficiency by maximizing necessary coding opportunities. In link correlation aware opportunistic routing, we propose a novel candidate forwarder selection algorithm to help opportunistic routing fully exploit the diversity benefit of the wireless broadcast medium. Testbed evaluation and extensive simulation show that the traditional network coding and opportunistic routing protocols’ transmission efficiency is significantly improved with our link correlation model

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Wearable Wireless Devices

    Get PDF
    No abstract available
    corecore