8 research outputs found

    Accuracy assessment on the number of flux terms needed to estimate in situ fAPAR

    Get PDF
    The fraction of Absorbed Photosynthetically Active Radiation (fAPAR) is a crucial variable for assessing global carbon balances and currently, there is an urgent need for reference data to validate satellite-derived fAPAR products. However, it is well-known that fAPAR ground measurements are associated with considerable uncertainties. Generally, fAPAR measurements can be carried out with two-, three- and four-flux approaches, depending on the number of flux terms measured. Currently, not much is known about the number of flux terms needed to satisfactorily reduce systematic errors. This study investigates the accuracy of different fAPAR estimates based on permanent, 10-min PAR measurements using Wireless Sensor Networks (WSNs) at three forest sites, located in Central Europe (mixed-coniferous forest), North America (boreal-deciduous forest) and Central America (tropical dry forest). All fAPAR estimates reflect the seasonal course of fAPAR. The highest average biases of different fAPAR estimates account to 0.02 at the temperate, 0.08 at the boreal and -0.05 at the tropical site, respectively, thereby generally fulfilling the uncertainty threshold of a maximum of 10 % or 0.05 fAPAR units set by the Global Climate Observing System (GCOS, 2016). During high wind speed conditions at the boreal site, the bias of the two-flux fAPAR estimate exceeded the 0.05-uncertainty threshold. Three-flux fAPAR estimates were not found to be advantageous, especially at the tropical site. Our findings are beneficial for the development of sampling protocols that are needed to validate global satellite-derived fAPAR products

    Multi-scale assessment of drought-induced forest dieback

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesDrought has been intensified over the years and will continue to worsen due to climate change. Existing works have focused their attention on crops rather than forests. Adverse effects are felt by all flora and fauna but the impact of the recent droughts on forest ecosystems is still unknown. Greater root depth allows them to withstand the immediate impacts of drought in contrast to crops and other vegetation. This study aims to see not only the interaction between drought and forest vitality from a multi-scale and temporal viewpoint while also to detect the impact of the recent 2018/19 drought on forest vitality based on remote sensing data. The data from the German Drought Monitor was used for the area-wide estimation of drought in Germany. Vegetative indices like NDVI collected from MODIS and Sentinel 2A were used to study the interactions between drought and forest vitality. Data for both have been acquired for the years 2000-2019. A long-standing time series data was decomposed and seasonally adjusted for better cross-correlation between the variables. The cross-correlation was verified by using breakpoints estimation by dividing the data into historically observed and test data. The coniferous-dominated black forest was used as a study area for a more in-depth analysis. Results showed that forest vitality was lowest one month after a severe drought, indicated by the highest decline in NDVI for all the forest types. This was verified using high resolution Sentinel images and the highest change does correspond to the month of January 2019. There was change in NDVI of over -0.5 for 80.63% of the entire study area. The change for each forest type was 81.74%, 54.42%, 84.14% for coniferous, broadleaved and mixed forests respectively. Two decades of NDVI and Soil Moisture Index (SMI) data along with Sentinel images for better area calculation because of higher resolution make this a highly effective approach to assess the impacts of drought on forest dieback. The methodology and data can be applied across the study area and with suitable drought indices can be used to assess the drought induced forest dieback across the globe. However, in-situ analysis with ecological considerations at the individual level could further the validity of the cross-correlations among forest types and drought. Reproducibility self-assessment (https://osf.io/j97zp/): 3, 2, 3, 1, 3 (input data, pre-processing, methods, computational environment, results)

    Annual Progress Report of the European and Global Drought Observatories

    Get PDF
    With this report, the reader finds an overview of the changes, upgrades and new features created in the European Drought Observatory (EDO) and the Global Drought Observatory (GDO) and made in 2019. The year proved relatively quiet concerning drought events in Europe; the subcontinent was only affected in the Baltics, although fires broke out vigorously in the Balkans, Spain and Russia. Thanks to the recent juvenile concern with regard to the heating up of the climate, drought events and forest fires drew more public-attention. Our reaction upon this concern in the Global Drought Observatory is the development of a new group of data, which we call Drought Mitigation. With more people genuinely concerned in the effect of our alternation of the properties of the lower atmosphere, we take up the task to provide guidelines for repair and adaptation. Higher temperatures imply that air depletes more vapour from vegetation and soil, leading to more intense droughts or floods. Consient management of our fresh water resources and massive tree planting are measures that can have significant impact on the effects of a Drought, Forest Fires or also Flood events. Therefore, we started with including the results of the often-cited research result regarding reforestation potential of the Crowther Lab as a layer in the Global Drought Observatory. We completed our work with enriching data describing dams with data regarding the location, name and quantitative characteristics of dams as an additional layer. We worked on the integration of the GRACE Dataset, which gives us an actualized satellite born, insight in the depletion of groundwater resources. We created a new index, alerting drought impacts on protected wetlands. Droughts events in these areas might affect rare species living in these protected wetlands, thus creating a link to the biodiversity crisis. The drought alerting mechanism we developed thus far were human centred. With this new index and with the Crowther Lab reforestation inventory we hope to correct this one species view of the past, learning to share our territory with all species, also during hard times of a drought disaster. With these additions, we hope that EDO and GDO will give you a better overview of the impacts of drought events, not only for our economy but also for our shared ecosystems and their services to us. Finally note that we engage in a project to export EDO and GDO knowledge and software to African regional partners. Thus enabling them to set up drought observatories in Africa just as if we did for South- and Central America. Such a collaboration works both ways, we understand better the impacts of Drought events in their region and we learn from their practical skills with regard to make things work in a challenging environment, whilst we can give them working drought observatory software, practical manners to, almost, fully automate the filling and updating of the systems combined with our specific expertise on droughts build up in the last 12 years.JRC.E.1-Disaster Risk Managemen

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (R²=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (R²=0.68) and -25% (R²=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukünftiger Kohlenstoffbilanzen sind wichtig für das Verständnis des globalen Klimawandels und sind auf genaue Messungen von Stoffflüssen zur Berechnung der Produktivität des Erdökosystems angewiesen. Die Produktivität der Biosphäre unserer Erde wiederum ist abhängig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen Biosphäre, aus Satellitendaten abzuleiten, mit deren Hilfe man die Produktivität unseres Erdsystems computergestützt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfügbare photosynthetisch aktive Strahlung (PAR) im Wellenlängenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst präzise Informationen aus dem globalen FAPAR zu gewährleisten, erklärte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestützte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine Unsicherheitsabschätzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjährigen, 10-minütigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in Süddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusätzlichen meteorologischen und phänologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden für die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen Lichtverhältnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. Für diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des Verhältnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, müssen „four-flux“ FAPAR-Messungen durchgeführt werden, d.h. zusätzlich Messungen der PAR Albedo des Blätterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen für die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, Blattfärbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natürliche saisonale Schwankungen aufgrund der phänologischen Entwicklung der Wälder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die über phänologisch erklärbare Schwankungen hinausgehen. So bestätigten die in situ Beobachtungen eine signifikante Überschätzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von über 60° und um bis zu 0,05 bei Vorkommen gefärbter Blätter der Laubbäume. Die Ergebnisse bestätigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten über 5 ms-1 äußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der Abschätzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht überschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfällig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des Blätterdachs bei der „two-flux“ FAPAR-Messung nicht berücksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grüne Blätter, kann die „two-flux“ FAPAR-Messung für die Validierung von satellitengestützten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien häufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt überschreiten auch unter Berücksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschätzte (d.h. negative Werte für die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (R²=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (R²=0,68) bzw. -25% (R²=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren Komplexität beider Ökosysteme zurückgeführt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut überlegt sein sollte, da die Überschätzung von FAPAR während eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter Berücksichtigung der Unsicherheiten der Bodendaten erfüllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen Variabilität von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestützten FAPAR-Produkten ist abhängig von der Komplexität des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestütztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der räumlichen Variabilität, wurde am borealen Standort erzielt, für den die Komplexität des Ökosystems unter Berücksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfällt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine Wissenslücke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukünftigen Validierungsstudien auch berücksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen für die Durchführung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestützte FAPAR-Beobachten validieren und zukünftig verbessern zu können

    Harmonization of GEOV2 fAPAR time series through MODIS data for global drought monitoring

    No full text
    The temporal consistency of the fAPAR GEOV2 full time series (constituted by data derived from SPOT-VGT1/2 and PROBA-V) is analyzed against the single-sensor MODIS dataset, with a particular focus on the most recent fAPAR anomalies (z-scores) produced from PROBA-V in the period 2014–2017. The intercomparison highlights a systematic overestimation of GEOV2 fAPAR z-scores when compared to MODIS fAPAR, likely related to the observed positive bias (over 90% of the domain) in the PROBA-V vs. SPOT-VGT1/2 relationship. A simple two step harmonization procedure has been proposed to remove this discrepancy, based on two separate linear corrections of SPOT-VGT1/2 (2001–2013) and PROBA-V (2014–2017) data with respect to MODIS, followed by a time lag correction. The harmonized GEOV2 time series preserves the overall dynamic of fAPAR, while removing the sensor bias and improving the consistency with MODIS data. The fAPAR anomalies from the harmonized GEOV2 time series provide unbiased estimates of z-scores that are overall well correlated (R=0.55 ± 0.25) with the MODIS fAPAR anomalies.JRC.E.1-Disaster Risk Managemen
    corecore