7,513 research outputs found

    Measure What Should be Measured: Progress and Challenges in Compressive Sensing

    Full text link
    Is compressive sensing overrated? Or can it live up to our expectations? What will come after compressive sensing and sparsity? And what has Galileo Galilei got to do with it? Compressive sensing has taken the signal processing community by storm. A large corpus of research devoted to the theory and numerics of compressive sensing has been published in the last few years. Moreover, compressive sensing has inspired and initiated intriguing new research directions, such as matrix completion. Potential new applications emerge at a dazzling rate. Yet some important theoretical questions remain open, and seemingly obvious applications keep escaping the grip of compressive sensing. In this paper I discuss some of the recent progress in compressive sensing and point out key challenges and opportunities as the area of compressive sensing and sparse representations keeps evolving. I also attempt to assess the long-term impact of compressive sensing

    Design study of TDRS antenna gimbal system for LANDSAT-D

    Get PDF
    The conceptual design studies of a two axis antenna drive assembly for the TDRSS link communications subsystem for LANDSAT D are presented. The recommended antenna drive assembly is a simple and reliable design substantially similar to the antenna and solar array drives developed and space qualified for programs such as DSCS 2 and FltSatCom. The gimbal design tradeoff is presented, along with drive electronics

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB

    Predicting Audio Advertisement Quality

    Full text link
    Online audio advertising is a particular form of advertising used abundantly in online music streaming services. In these platforms, which tend to host tens of thousands of unique audio advertisements (ads), providing high quality ads ensures a better user experience and results in longer user engagement. Therefore, the automatic assessment of these ads is an important step toward audio ads ranking and better audio ads creation. In this paper we propose one way to measure the quality of the audio ads using a proxy metric called Long Click Rate (LCR), which is defined by the amount of time a user engages with the follow-up display ad (that is shown while the audio ad is playing) divided by the impressions. We later focus on predicting the audio ad quality using only acoustic features such as harmony, rhythm, and timbre of the audio, extracted from the raw waveform. We discuss how the characteristics of the sound can be connected to concepts such as the clarity of the audio ad message, its trustworthiness, etc. Finally, we propose a new deep learning model for audio ad quality prediction, which outperforms the other discussed models trained on hand-crafted features. To the best of our knowledge, this is the first large-scale audio ad quality prediction study.Comment: WSDM '18 Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 9 page

    Xampling: Signal Acquisition and Processing in Union of Subspaces

    Full text link
    We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two. Analog compression that narrows down the input bandwidth prior to sampling with commercial devices. A nonlinear algorithm then detects the input subspace prior to conventional signal processing. A representative union model of spectrally-sparse signals serves as a test-case to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy and software complexities. We conduct a comprehensive comparison between two sub-Nyquist acquisition strategies for spectrally-sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address lowrate signal processing and develop an algorithm for that purpose that enables convenient signal processing at sub-Nyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicely into our framework.Comment: 16 pages, 9 figures, submitted to IEEE for possible publicatio

    Emc aerospace systems analysis Interim scientific report

    Get PDF
    Analysis and data requirements for solving potential aerospace electromagnetic compatibility problem

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin
    corecore