56 research outputs found

    A new class of trigonometric B-Spline Curves

    Get PDF
    We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties

    Neural-network-based curve fitting using totally positive rational bases

    Get PDF
    This paper proposes a method for learning the process of curve fitting through a general class of totally positive rational bases. The approximation is achieved by finding suitable weights and control points to fit the given set of data points using a neural network and a training algorithm, called AdaMax algorithm, which is a first-order gradient-based stochastic optimization. The neural network presented in this paper is novel and based on a recent generalization of rational curves which inherit geometric properties and algorithms of the traditional rational Bézier curves. The neural network has been applied to different kinds of datasets and it has been compared with the traditional least-squares method to test its performance. The obtained results show that our method can generate a satisfactory approximation

    On the caustics of Bézier curves

    Get PDF
    We provide exact formulae for the rational Bézier representation of caustics of planar Bézier curves of degree greater than one

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Discontinuities in numerical radiative transfer

    Full text link
    Observations and magnetohydrodynamic simulations of solar and stellar atmospheres reveal an intermittent behavior or steep gradients in physical parameters, such as magnetic field, temperature, and bulk velocities. The numerical solution of the stationary radiative transfer equation is particularly challenging in such situations, because standard numerical methods may perform very inefficiently in the absence of local smoothness. However, a rigorous investigation of the numerical treatment of the radiative transfer equation in discontinuous media is still lacking. The aim of this work is to expose the limitations of standard convergence analyses for this problem and to identify the relevant issues. Moreover, specific numerical tests are performed. These show that discontinuities in the atmospheric physical parameters effectively induce first-order discontinuities in the radiative transfer equation, reducing the accuracy of the solution and thwarting high-order convergence. In addition, a survey of the existing numerical schemes for discontinuous ordinary differential systems and interpolation techniques for discontinuous discrete data is given, evaluating their applicability to the radiative transfer problem

    On the caustics of Bézier curves

    Get PDF
    We provide exact formulae for the rational Bézier representation of caustics of planar Bézier curves of degree greater than one

    Annales Mathematicae et Informaticae (43.)

    Get PDF

    Gardener's spline curve

    Get PDF
    In the well-known gardener’s construction of the ellipse we replace the two foci by a finite set of points in the plane, that results in a G spline curve that consists of elliptic arcs, if the set contains at least three non-collinear points. An algorithm is provided for the specification of these elliptic arcs, along with their control point based representation

    Annales Mathematicae et Informaticae 2014

    Get PDF

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation
    corecore