817 research outputs found

    Log-domain All-pass Filter-based Multiphase Sinusoidal Oscillators

    Get PDF
    Log-domain current-mode multiphase sinusoidal oscillators based on all-pass filters are presented in this paper. The first-order differential equation is used for obtaining inverting and non-inverting all-pass filters. The proposed oscillators are realized by all-pass filters which can be electronically tuned their natural frequency and stage gain by adjusting the bias currents. Each all pass filter contains 10 NPN transistors and a grounded capacitor. The validated BJT model which used in SPICE simulation operated by a single power supply as low as 2.5 V. The frequency of oscillation can be controlled over four decades. The total harmonic distortions of these MSO at frequency 56.67 MHz and 54.44 MHz, obtained around 0.52% and 0.75%, respectively. The proposed circuits enable fully integrated in telecommunication systems and also suit to high-frequency applications. Nonideality studies and PSpice simulation results are included to confirm the theory

    Electronically Tunable Third-Order Quadrature Oscillator Using CDTAs

    Get PDF
    A current/voltage-mode third-order quadrature oscillator based on current differencing transconductance amplifiers (CDTAs) is presented in this paper. Outputs of two current-mode and two voltage-mode sinusoids each with 90o phase difference are available in the quadrature oscillator circuit. The oscillation condition and oscillation frequency are independently controllable. The proposed circuit employs only grounded capacitors and is ideal for integration. Simulation results are included to confirm the theoretical analysis

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    New Universal Current-mode Biquad Using Only Three ZC-CFTAs

    Get PDF
    The objective of this paper is to present a new universal Current-mode biquad capable of providing all the five basic filter functions, namely, low pass (LP), Band pass (BP), high pass (HP), Band reject (BR) and all pass (AP) from the same configuration using only three Z - copy current follower transconductance amplifiers (ZC-CFTA) along with the provision of independent electronic tunability of the filter parameters f0 and Q0 (or bandwidth) through two separate DC bias currents while employing both grounded capacitors as desirable for integrated circuit implementation. The workability of the proposed structure is verified by PSPICE simulations based on CMOS implementation of the ZC-CFTA

    A miniature tunable quadrature shadow oscillator with orthogonal control

    Get PDF
    This article presents a new design of a quadrature shadow oscillator. The oscillator is realized using one input and two outputs of a second-order filter cell together with external amplifiers in a feedback configuration. The oscillation characteristics are controlled via the external gain without disturbing the internal filter cell, following the concept of the shadow oscillator. The proposed circuit configuration is simple with a small component-count. It consists of, two voltage-different transconductance amplifiers (VDTAs) along with a couple of passive elements. The frequency of oscillation (FO) and the condition of oscillation (CO) are controlled orthogonally via the dc bias current and external gain. Moreover, with the addition of the external gain, the frequency range of oscillation can be further extended. The proposed work is verified by computer simulation with the use of 180 nm complementary metal–oxide–semiconductor (CMOS) model parameters. The simulation gives satisfactory results of two sinusoidal output signals in quadrature with some small total harmonic distortions (THD). In addition, a circuit experiment is performed using the commercial operational transconductance amplifiers LM13700 as the active components. The circuit experiment also demonstrates satisfactory outcome which confirms the validity of the proposed circuit

    New Electronically Tunable Third Order Filters and Dual Mode Sinusoidal Oscillator Using VDTAs and Grounded Capacitors

    Get PDF
    This study introduces a third order filter and a third order oscillator configuration. Both the circuits use two voltage difference transconductance amplifiers (VDTAs) and three grounded capacitors. By selecting the input and output terminals properly, current mode and transimpedance mode low-pass and band-pass filters can be obtained without component matching conditions. The natural frequency (ω0) can be tuned electronically. The oscillator circuit provides voltage and current outputs explicitly. The condition of oscillation (CO) and the frequency of oscillation (FO) can be adjusted orthogonally and electronically. The workability of the configurations is judged using TSMC CMOS 0.18 μm technology parameter as well as commercially available LM13700 integrated circuits (ICs). The simulation results show that: for ±0.9V power supply, the power consumption is 1.08 mW for both the configurations, while total harmonic distortions (THDs) are less than 2.06% and 2.17% for the filter and oscillator configurations, respectively

    Low-Voltage High-Linearity Wideband Current Differencing Transconductance Amplifier and Its Application on Current-Mode Active Filter

    Get PDF
    A low-voltage high-linearity wideband current differencing transconductance amplifier (CDTA) is presented in this paper. The CDTA consists of a current differencing circuit and a cross-coupling transconductance circuit. The PSPICE simulations of the proposed CDTA show a good performance: -3dB frequency bandwith is about 900 MHz, low power consumption is 2.48 mW, input current linear range is ±100 µA and low current-input resistance is less than 20 Ω, high current-output resistance is more than 3 MΩ. PSpice simulations for a current-mode universal filter and a proposed high-order filter are also conducted, and the results verify the validity of the proposed CDTA

    Current-Controlled Current-Mode Quadrature Oscillator Using Translinear Current Conveyors

    Get PDF
    In this paper, a current-mode quadrature oscillator using second-generation current conveyors (CCIIs) is presented. The proposed oscillator consists of two CCIIs, two grounded capacitors and two grounded resistors. The circuit is suitable for integrated circuit implementation by using grounded capacitors. In addition, a new current-controlled current-mode quadrature oscillator using two current controlled second generation current conveyors (CCCIIs) and two grounded capacitors can be obtained by replacing CCIIs and resistors series at X terminals with CCCIIs. The condition of oscillation and frequency of oscillation can be orthogonally controlled. The frequency of oscillation can be controlled by grounded resistors and external bias currents. The proposed circuits have been simulated by SPICE simulations. The simulation results are confirmed the proposed theory

    Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

    Get PDF
    A high input impedance voltage-mode universal biquadratic filter with three input terminals and seven output terminals is presented. The proposed circuit uses three differential difference current conveyors (DDCCs), four resistors and two grounded capacitors. The proposed circuit can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass, simultaneously. The proposed circuit offers the features of high input impedance, using only grounded capacitors, and orthogonal controllability of resonance angular frequency and quality factor

    Electronically Tunable Sinusoidal Oscillator Circuit

    Get PDF
    This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs) and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters
    corecore